Электролиз расплавов и водных растворов

Разберем данный вопрос на следующих примерах:

1) Электролиза расплава NaCl с инертными электродами.

К) Na + e = Na , А) 2Сl - 2e = Сl .

На катоде идет процесс восстановления, а на аноде – окисления.

При электролизе данного соединения получается металлический натрий и свободный хлор.

 

2) Химизм промышленного получение алюминия.

К) Аl3++ 3e = Аl , А) 2О2–- 4e = О2.

В случае водных растворов наблюдается конкуренция между ионами растворенного вещества и воды за процесс окисления и восстановления. При этом следует учитывать, что металл анода тоже может окисляться – растворимый анод. К нерастворимым анодам относятся: углерод, золото, платина, свинец в растворе серной кислоты и др.

Последовательность разрядки водных растворов ионов в ходе электролиза согласуется со следующей схемой:

1) Катионы:

– от лития до Аl не восстанавливаются, так как идет электролиз воды;

– от Мn до водорода – наряду с восстановлением металла идет восстановление воды;

– металлы после водорода – идет восстановление металла.

2) Анионы:

– если анод растворимый – вначале происходит окисление анода;

– если анод нерастворимый – вначале окисляются анионы бескислородных кислот (I, Вr, Cl) за исключением F;

– далее идет окисление ОН и Н2О;

– затем окисляются анионы кислородсодержащих кислот и F-.

Разберем различные случаи электролиза водных растворов:

 

1) Электролиз водного раствора NaCl с инертными электродами.

К) 2Н2О + 2e = Н2 + 2ОН , А) 2Сl - 2e = Сl2.

Вторичная реакция в ходе электролиза Na ОН = NaОН.

Таким образом в ходе электролиза водного раствора NaОН с инертными электродами образуются: Н2, Сl2 и NaОН.

 

2) Электролиз водного раствора сульфата натрия с инертными электродами.

К) 2Н2О + 2e = Н2 + 2ОН , А) 2Н2О - 4e = О2 + 4Н+.

 

Вторичная реакция – Н+ + ОН = Н2О.

В ходе электролиза идет разложение воды с образованием О2 и Н2. Сульфат натрия не расходуется в ходе электролиза, но он обеспечивает высокую электропроводность электролита.

 

3) Электролиз сульфата меди с медным анодом.

К) Сu2++ 2e = Сu0, А) Сu0 - 2e = Сu2+.

 

Из приведенной схемы видно, что в данном случае происходит перенос меди с анода на катод, что приводит к очистке меди. Примеси, входящие в состав черновой меди, включают в себя неактивные металлы (Аg, Аu, Рt) и активные металлы (Fe, Мn и др.). Неактивные металлы будут образовывать осадок в электролизёре, а в растворе будут накапливаться катионы активных металлов. Поэтому периодически производится замена электролита.

 

2.2. Количественные расчёты в электролизе

Применительно к электролизу закон эквивалентов можно сформулировать следующим образом: количества моль эквивалентов веществ, образующихся на катоде и аноде, равны числу моль эквивалентов электронов прошедших через раствор электролита. Применяемые в расчетах законы Фарадея – это частный случай применения закона эквивалентов к электрохимическим реакциям.

Объединенный закон Фарадея имеет вид:

(8.2)

где m(х) – масса окисленного или восстановленного вещества при электролизе в граммах;

– молярная масса эквивалента этого вещества;

I – сила тока (в амперах);

τ – время электролиза (в секундах);

F – число Фарадея равное 96500 Кл.

Если в реакции окисляются или восстанавливаются газообразные вещества, то в полученное уравнение вместо масс подставляются соответствующие значения объемов.

Пример:

Рассчитать массу меди, которая должна выделится на катоде при электролизе раствора сульфата меди в течение 2 часов при силе тока в 100 А.

Решение: К) Сu2+ + 2e®Cu,fэкв.(Cu) = ½, М(½Cu) = 31,773 г ∕ моль.

Подставляя в уравнение закона Фарадея соответствующие значения получаем: m(Cu) = = 237,063 г.

2.3. Аккумуляторы – устройства позволяющие многократно повторять операции зарядки и разрядки. Теоретически обратимым, после разрядки, может быть любой гальванический элемент, но восстановленная емкость для большинства гальванических элементов невелика.

Наилучшими эксплуатационными характеристиками обладают следующие аккумуляторы:

1) кислотные – свинцовые,

2) щелочные – никель-кадмиевые, железо-кадмиевые и серебряно-цинковые аккумуляторы.

1) Свинцовый аккумулятор

Электроды свинцового аккумулятора выполнены в виде ячеистых пластин из свинцового сплава; ячейки заполнены смесью свинцового глета (PbO) с глицерином. После заполнения аккумулятора электролитом (H2SO4) оксид свинца превращается в сульфат. При зарядке протекает электролиз, а при разрядке работает гальванический элемент:

Зарядка аккумулятора:

А) PbSO4 + 2H2O - 2e = PbO2 + SO42– + 4H+ ,

К) PbSO4 + 2e = Pb + SO42.

Разрядка аккумулятора:

А) Pb + SO42- 2e = PbSO4 ,

К) PbO2 + SO42– + 4H+ + 2e = PbSO4 + 2H2O.

Суммарное уравнение:

разрядка ®

Pb + PbO2 + 2H2SO4 = 2PbSO4 + 2H2O, ЭДС = 2,0 В.

зарядка

 

При разрядке аккумулятора расходуется серная кислота и образуется вода с плотностью примерно в два раза меньшей, что приводит к уменьшению плотности электролита. На измерении плотности электролита основан один из методов контроля степени разрядки аккумулятора.

 









Дата добавления: 2015-08-21; просмотров: 1455; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.