Закон больших чисел и его практическое значение
Нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые невозможно. Вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. При некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.
Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия указываются в теоремах, носящих название закона больших чисел (теоремы Чебышева и Бернулли).
Нормально распределенные случайные величины широко распространены на практике. Чем это объясняется?
Ответ дал А.М. Ляпунов. Если случайная величина представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то имеет распределение, близкое к нормальному.
В практической деятельности большое значение имеют события с вероятностями, близкими к единице или нулю. Отсюда становится ясным, что одной из основных задач теории вероятностей должно быть установление закономерностей, происходящих с вероятностями, близкими к единице, при этом особую роль должны играть закономерности, возникающие в результате наложения большого числа независимых или слабо зависимых случайных факторов. Закон больших чисел является одним из таких предложений теории вероятностей.
Под законом больших чисел понимают всю совокупность предложений, утверждающих с вероятностью, близкой к единице, что наступит некоторое событие, зависящее от неограниченного числа случайных событий, каждое из которых оказывает на него лишь незначительное влияние.
Дата добавления: 2015-08-11; просмотров: 1861;