Теорема сложения скоростей

Абсолютная скорость точки при составном движении равна геометрической сумме переносной и относительной скоростей.

Пусть тело, с которой связана подвижная система координат, совершает произвольное движение относительно неподвижной системы координат. Это движение может быть рассмотрено как поступательное движение вместе с началом подвижной системой координат и сферическое относительно этого начала. Из векторного треугольника получаем

.

Вычислив проекции этого векторного равенства на оси неподвижной системы координат, получим уравнения движения точки М.

Относительное движение будет характеризоваться координатами точки в подвижной системе координат:

.

Вычисляя производную вектора по времени с помощью формулы Бура, получим:

.

Сумма слагаемых, стоящих в скобке, даёт скорость точки твёрдого тела, с которым "сцеплена" подвижная система координат, совпадающей с исследуемой точкой в данный момент времени. Эту скорость называют переносной

.

Относительная производная даёт относительную скорость

.








Дата добавления: 2015-08-08; просмотров: 606;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.