СоотношениЕ неопределенностей
Для измерения величины a, описываемой оператором , частица в исследуемом состоянии приводится во взаимодействие с соответствующим прибором. Его состояние, описываемое классической физикой, изменяется. Регистрируем изменение и получаем измеряемую величину. Повторяем измерение N раз, находим среднее значение и дисперсию
,
.
Если исследуемое состояние совпадает с одной из собственных функций оператора , то результат измерения однозначен и погрешность равна нулю
, .
Для измерения величины , описываемой оператором , используется другой прибор. Если и коммутируют, то наборы их собственных функций {Ψn} совпадают, соответствующие измерения совместимы. В состоянии результаты однозначные , , их точность не ограничена.
Если эрмитовые операторы и не коммутируют
, (2.29)
где – эрмитовый оператор (доказательство на практических занятиях), то и имеют разные наборы собственных функций. Измерительные приборы для а и b несовместимы, действие одного прибора нарушает работу другого. Например, на лекции 1 показано, что при измерении координаты волны используется экран со щелью. Это вызывает дифракцию волны и растет неопределенность импульса. Измерить а и b одновременно с высокой точностью невозможно. В состоянии найдем связь между их флуктуациями, т. е. абсолютными погрешностями:
,
,
где дисперсия по определению среднего равна
,
.
Ограничение коммутатора. Среднее от квадратичной формы эрмитовых операторов и по любому состоянию Ψ не может быть отрицательным
. (2.30)
Во втором равенстве использована операция эрмитового сопряжения. Упрощаем левую сторону (2.30), учитывая эрмитовость операторов:
.
В результате коммутатор
ограничен
. (2.31)
Соотношение неопределенностей Гейзенберга. В качестве и выбираем операторы относительного отклонения от среднего
, , (2.32)
удовлетворяющие
.
С учетом
,
находим
, , .
Из (2.31) получаем
. (2.33)
Если операторы коммутируют, то , и измерения a и b можно выполнить с неограниченной точностью.
Соотношение неопределенностей координата-импульс. Коммутатор
сравниваем с (2.29)
,
получаем
, ,
из (2.33) находим
(2.37)
– чем точнее измеряется координата частицы, тем неопределеннее импульс, и наоборот. Локализация частицы приводит к увеличению неопределенности ее импульса и кинетической энергии. Аналогичная формула была получена в полуклассической квантовой механике.
Соотношение неопределенностей энергия-время. Средняя скорость частицы выражается через путь и время
.
Флуктуация кинетической энергии
,
тогда
.
Учитывая (2.37), находим
(2.39)
– чем точнее измеряется энергия, тем больший промежуток времени необходим для измерения;
– чем уже энергетический уровень δЕвозбужденного состояния, тем больше время его жизниδt.
Дата добавления: 2015-08-08; просмотров: 832;