Доверительный интервал. Доверительная вероятность.
2. Расчёт и построение доверительных интервалов.
3. Пример сравнения средних арифметических, расчёта и построения доверительного интервала.
1.
По найденным характеристикам выборки судят о неизвестных характеристиках генеральной совокупности. Очевидно, что в общем случае они не будут точно совпадать друг с другом: истинное значение характеристики Q может быть больше или меньше выборочного значения характеристики Q*.
Чтобы статистически оценить искомое истинное значение характеристики Q, поступают следующим образом:
1) Задаются некоторой достаточно большой вероятностью p (например, p = 0,9; 0,95; 0,99; 0,999), чтобы событие, заключающееся в нахождении искомого значения Q с этой вероятностью в соответствующем интервале можно было считать статистически достоверным. Эту вероятность называют доверительной вероятностью. В спортивных исследованиях обычно принимают p = 0,95 (иногда 0,99).
2) Затем для заданной величины p рассчитывают по формулам математической статистики нижнюю Q1 и верхнюю Q2 границы интервала Jp.
Доверительным интервалом Jp называют случайный интервал (Q1, Q2), который накрывает неизвестную характеристику Q с доверительной вероятность p.
Границы доверительного интервала Jp называют:
Q1 = Q* - e1¾нижней доверительной границей;
Q2 = Q* - e2¾верхней доверительной границей.
Значения e1 и e2 могут совпадать (при симметричном распределении Q*) и быть разными (при несимметричном распределении Q*). Они характеризуют точность, а вероятность p¾надежность определения Q. Между надежностью и точностью существует обратная зависимость: чем выше надежность, тем ниже точность определения Q и наоборот.
С увеличением числа измерений при заданном p повышается точность определения Q (уменьшаются e1 и e2).
Для точного расчета границ доверительного интервала необходимо знать закон распределения выборочной характеристики Q*.
2. Задача определения доверительных интервалов для оценки генерального среднего арифметического значения xг нормального распределения решена математической статистикой для следующих двух случаев:
а) генеральная дисперсия известна;
б) генеральная дисперсия неизвестна.
Рассмотрим второй случай.
В этом случае искомое генеральное среднее арифметическое находится в следующем доверительном интервале:
,
где – среднее арифметическое значение выборки; ta – величина, которая находится по таблицам распределения Стьюдента в зависимости от числа степеней свободы k = n - 1, уровня значимости a; – стандартная ошибка среднего арифметического, рассчитывается по формуле:
.
Примечание: В практике научных исследований, когда закон распределения малой выборочной совокупности (n < 30) неизвестен или отличен от нормального, пользуются вышеприведенной формулой для приближенной оценки доверительных интервалов.
3. Для рассмотрения этого вопроса используется пример с двумя группами велосипедистов, прошедших подготовку с использованием разных методик (Гинзбург Г.И., Киселев В.Г. Расчетно-графические работы по спортивной метрологии. – Минск: БГОИФК, 1984. – С. 38 – 43)
Контрольные вопросы для самопроверки:
1. Что такое доверительный интервал, доверительная вероятность?
2. Порядок построения доверительного интервала.
3. В каких случаях можно точно определить границы доверительного интервала?
Литература:
1. Основы математической статистики. Уч. пособие для ин-тов физической культуры (под общ. ред. В.С. Иванова). – М.: Физкультура и спорт, 1990. – С. 74 – 78.
2. Рукавицына С.Л., Волков Ю.О., Солтанович Л.Л. Спортивная метрология. Проверка эффективности методики тренировки с применением методов математической статистики. Практикум для студентов БГУФК. – Минск: БГУФК, 2006. – С. 67 – 68.
3. Гинзбург Г.И., Киселев В.Г. Расчетно-графические работы по спортивной метрологии. – Минск: БГОИФК, 1984. – С. 35 – 51.
Дата добавления: 2015-07-22; просмотров: 1689;