Принцип проверки гипотез.
1. В физическом воспитании и спорте часто приходится делать вывод об общих закономерностях проявления какого-либо показателя: нормально или нет распределены результаты измерений этого показателя в генеральной совокупности, отличается ли среднее арифметическое значение результатов измерения в генеральной совокупности после тренировок от аналогичного параметра до тренировок, а обнаруженное расхождение между результатами не выходит за пределы случайных ошибок (эффективна или нет методика тренировок), отличается ли дисперсия генеральной совокупности результатов измерения показателя после тренировок от такого же показателя до тренировок (изменилась или нет стабильность результатов спортсмена) и т.д.
Так как указанные выводы делаются на основании относительно небольшого числа результатов измерения показателя (n = 30), необходима проверка достоверности (бесспорности) таких выводов.
Для этого применяются статистические гипотезы.
Статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Статистическую гипотезу обозначают символом H.
Обычно выдвигают и проверяют две противоречащие друг другу гипотезы:
1) нулевую (основную) H0;
2) конкурирующую (альтернативную) H1.
Примеры статистических гипотез:
1) Нулевая гипотеза H0: закон распределения результатов измерения является нормальным. Конкурирующая гипотеза H1: закон распределения результатов измерения отличен от нормального.
2) Нулевая гипотеза H0: среднее арифметическое значение генеральной совокупности результатов измерения показателя после цикла тренировок не изменилось. Конкурирующая гипотеза H1: среднее арифметическое значение увеличилось.
2. Для проверки выдвинутых нулевых гипотез применяют статистические критерии, разработанные математиками и носящие, как правило, их имена.
Статистическим критерием называют определенное правило, задающее условия, при которых проверяемую нулевую гипотезу следует либо отклонить, либо принять. При отклонении нулевой гипотезы принимается конкурирующая. Критерий обозначается буквой К.
Значение критерия, вычисленное по данным выборки, называют наблюдаемым значением критерия (Кнабл). Совокупность значений критерия, при которых отвергают нулевую гипотезу, называют критической областью. Совокупность значений критерия, при которых нулевую гипотезу принимают, называют областью принятия гипотезы (областью допустимых значений). Указанные области разграничены критическим (граничным) значением критерия, который находится по соответствующей таблице.
Односторонняя критическая область используется, если, согласно конкурирующей гипотезе, одна рассматриваемая величина может быть только больше (или только меньше) другой величины.
Двусторонняя критическая область используется, если, согласно конкурирующей гипотезе, одна рассматриваемая величина может быть как больше, так и меньше (не равна) другой.
Отклонение нулевой гипотезы, когда она фактически верна, называется ошибкой первого рода. Принятие нулевой гипотезы, когда фактически она не верна, называется ошибкой второго рода.
Уровень значимости a – это вероятность попадания критерия К в критическую область, если верна нулевая гипотеза, другими словами, уровень значимости – это вероятность ошибки первого рода. Он служит для определения по таблицам критических значений критерия (Ккрит), которые указывают положение критических точек, отделяющих критическую область от области принятия гипотезы. Обычно величина a выбирается малой. Поэтому попадание критерия К в критическую область при справедливости нулевой гипотезы мало вероятно. В этом случае, при попадании критерия К в критическую область считают, что должна быть принята конкурирующая гипотеза.
Часто a принимают равной 0,05. Это означает, что вероятность ошибочно принять гипотезу H1, если справедлива гипотеза H0, равна только
5 %.
Сформулируем основные этапы проверки статистических гипотез:
1) Исходя из задач исследования, формулируются статистические гипотезы.
2) Выбирается уровень значимости, на котором будут проверяться гипотезы.
3) На основе выборки, полученной из результатов измерения, определяется статистическая характеристика гипотезы.
4) Определяется критическое значение статистического критерия по соответствующей таблице на основании выбранного уровня значимости и объема выборки.
5) Вычисляется наблюдаемое (фактическое) значение статистического критерия.
6) На основе сравнения наблюдаемого и критического значения критерия в зависимости от результатов проверки нулевая гипотеза либо принимается, либо отклоняется в пользу альтернативной.
Для проверки статистических гипотез используются параметрические и непараметрические методы.
Параметрические методы служат для проверки гипотез о неизвестных параметрах генеральной совокупности, когда закон распределения случайной величины известен.
Непараметрические методы применяются в тех случаях, когда закон распределения случайной величины неизвестен, или когда условия применения параметрических методов не выполняются.
Параметрические методы эффективнее непараметрических.
Перейдем к ознакомлению с основными положениями теории надежности тестов.
Контрольные вопросы для самопроверки:
1. Что называют статистической гипотезой?
2. Принцип выдвижения статистических гипотез.
3. В чём заключается основной принцип проверки статистических гипотез?
4. Односторонняя и двусторонняя критическая область.
5. Ошибки при проверке гипотез. Уровень значимости.
6. Основные этапы проверки статистических гипотез.
7. Параметрические и непараметрические методы проверки статистических гипотез.
Литература:
1. Основы математической статистики. Уч. пособие для ин-тов физической культуры (под общ. ред. В.С. Иванова). – М.: Физкультура и спорт, 1990. – С. 81 – 90.
2. Рукавицына С.Л., Волков Ю.О., Солтанович Л.Л. Спортивная метрология. Проверка эффективности методики тренировки с применением методов математической статистики. Практикум для студентов БГУФК. – Минск: БГУФК, 2006. – С. 49 – 51.
Дата добавления: 2015-07-22; просмотров: 915;