Параметры резисторов и их расчет.

Параметры резисторов характеризуют эксплуатационные возможности применения конкретного типа резистора в конкретной электрической схеме.

Номинальное сопротивление Rном и его допустимое отклонение от номинала ±DR являются основными параметрами резисторов. Номиналы сопротивлений стандартизованы в соответствии с ГОСТ 10318–74, а допустимые отклонения – в соответствии с ГОСТ 9664–74. Для резисторов общего назначения ГОСТ предусматривает шесть рядов номинальных сопротивлений: Е6, Е12, Е24, Е48, Е96 и Е192. Цифра указывает количество номинальных значений в данном ряду, которые согласованы с допустимыми отклонениями (см. табл.2.1).

Таблица 2.1

Е24 Е12 Е6
1,0 1,0 1,0
1,1
1,2 1,2
1,3
1,5 1,5 1,5
1,6
1,8 1,8
2,0
2,2 2,2 2,2
2,4
2,7 2,7
3,0
3,3 3,3 3,3
3,6
3,9 3,9
4,3
4,7 4,7 4,7
5,1
5,6 5,6
6,2
6,8 6,8 6,8
7,5
8,2 8,2
9,1

Номинальные значения сопротивлений определяются числовыми коэффициентами, входящими в табл.2.1, которые умножаются на 10n, где п –целое пложительное число. Так например, числовому коэффициенту 1,0 соответствуют резисторы с номинальным сопротивлением, равным 10, 100, 1000 Ом и т.д.Допустимые отклонения от номинала для ряда Е6 составляют ±20%, для ряда Е12 – ± 10%, для ряда Е24 – ± 5%. Это значит, что резистор с сопротивлением 1,5к0м из ряда Е12 может обладать сопротивлением в пределах от 1,35 до 1,65к0м, а тот же резистор из ряда Е6 – в пределах от 1,2 до 1,8 кОм. Числовые коэффициенты, определяющие номинальные значения сопротивлений, подобраны так, что образуется непрерывная шкала сопротивлений, т.е. максимально возможное сопротивление какого–либо номинала совпадает (или несколько больше) с минимальной величиной сопротивления соседнего номинала.

Прецизионные резисторы имеют отклонения от номинала ±2%; ±1%;±0,5%; ±0,2%; ±0,1%; ±0,05%; ±0,02% и ±0,01%.

Номинальная мощность рассеивания Рном определяет допустимую электрическую нагрузку, которую способен выдержать резистор в течение длительного времени при заданной стабильности сопротивления.

Как уже отмечалось, протекание тока через резистор связано с выделением в нем тепла, которое должно рассеиваться в окружающую среду. Мощность, выделяемая в резисторе в виде тепла, определяется величиной приложенного к нему напряжения U и протекающего тока I и равна

PВЫД = UI ( 2.1 )

Мощность, рассеиваемая резистором в окружающую среду, пропорциональна разности температур резистора TR и окружающей среды ТO

(2.2)

и зависит от условий охлаждения резистора, определяемых величиной теплового сопротивления Rт которое тем меньше, чем больше поверхность резистора и теплопроводность материала резистора.

 

Рис. 2.1 Условия баланса мощностей резистора.

Из условия баланса мощностей можно определить температуру резистора, что наглядно показано на рис. 2.1а.

(2.3)

Следовательно, при увеличении мощности, выделяемой в резисторе, возрастает его температура TR , что может привести к выходу резистора из строя. Для того чтобы этог не произошло, необходимо уменьшить RT , что достигается увеличением размеров резистора. Для каждого типа резистора существует определенная максимальная температура Tmax , превышать которую нельзя.

Температура TR , как следует из вышеизложенного, зависит также от температуры окружающей среды. Если она очень высока, то температура TR можетпревысить максимальную, чтобы этого не произошло, необходимо уменьшать мощность, выделяемую в резисторе (2.1, б). Для всех типов резисторов в ТУ оговариваются указанные зависимости мощности от температуры окружающей среды (рис.2.1,в).Номинальные мощности стандартизованы ( ГОСТ 9663–61 ) и соответствуют ряду: 0,01; 0,025; 0,05; 0,121; 0,25; 0,5; 1; 1,2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500.

Предельное рабочее напряжение UПРЕД определяет величину допустимого напряжения, которое может быть приложено к резистору. Для резисторов с небольшой величиной сопротивления ( сотни ОМ ) эта величина определяется конструкцией резистора и рассчитывается по формуле:

(2.4)

Для остальных резисторов предельное рабочее напряжение определяется конструкцией резистора и ограничивается возможностью электрического пробоя, который, как правило, происходит по поверхности между выводами резистора или между витками спиральной нарезки. Напряжение пробоя зависит от длины резистора и давления воздуха. При длине резистора, не превышающей 5 см, оно определяется по формуле:

(2.5)

где Р – давление в мм рт. ст., l – длина резистора в см.

Величина Uпред указывает в ТУ, она всегда меньше Uпроб. При испытании резисторов на них подают испытательное напряжение Uисп, которое больше Uпред и меньше Uпроб.

Температурный коэффициент сопротивления (ТКС) характеризует относительное изменение сопротивления при изменении температуры

(2.6)

Он может быть как положительным, так и отрицательным. Если резистивная пленка толстая, то она ведет себя как объемное тело, сопротивление которого с ростом температуры возрастает. Если же резистивная пленка тонкая, то она состоит из отдельных "островков", сопротивление такой пленки с ростом температуры уменьшается, так как улучшается контакт между отдельными "островками". У различных резисторов эта величина лежит в пределах ± (7–12)10–4.

Коэффициент старения bR характеризует изменение сопротивления, которое вызывается структурными изменениями резистивного элемента за счет процессов окисления, кристаллизации и т.д.

(2.7)

В ТУ обычно указывается относительное изменение сопротивления в процентах за определенное время (1000 или 10000 ч).

Коэффициент напряжения Кн характеризует влияние величины приложенного напряжения на сопротивление. В некоторых типах резисторов при высоких напряжениях изменяется величина сопротивления. В непроволочных резисторах это обусловлено уменьшением контактного сопротивления между отдельными зернами резистивной пленки. В проволочных резисторах это обусловлено дополнительным разогревом проволоки при повышенных напряжениях:

(2.8)

где R100 – сопротивление резистора при напряжении UПРЕД,

R10 – сопротивление резистора при напряжении 0,1 Uпред.

ЭДС шумов резистора. Электроны в резистивном элементе находятся в состоянии хаотического теплового движения, в результате которого между любыми точками резистивного элемента возникает случайно изменяющееся электрическое напряжение и между выводами резистора появляется ЭДС тепловых шумов. Тепловой шум характеризуется непрерывным, широким, практически равномерным спектром. Величина ЭДС тепловых шумов определяется соотношением:

(2.9)

где К = 1,38 · 10 –23 Д ж/град– постоянная Больцмана,

Т – абсолютная температура в градусах шкалы Кельвина,

R – сопротивление. Ом,

Df – полоса частот, в которой измеряются шумы. При комнатной температуре =300° К)

(2.10)

Если резистор включен на входе высокочувствительного усилителя, то на его выходе будет слышен характерный шум. Уменьшить уровень этих шумов можно лишь уменьшая величину сопротивления R или температуру 7.

Помимо тепловых шумов существует токовый шум, возникающий при протекании через резистор тока. Этот шум обусловлен дискретной структурой резистивного элемента. При протекании тока возникают местные перегревы, в результате которых изменяются контакты между отдельными частицами токопроводящего слоя и, следовательно, флюктуирует (изменяется) величина сопротивления, что

ведет к появлению между выводами резистора ЭДС токовых шумов Еi . Токовый шум, также как и тепловой, имеет непрерывный спектр, но интенсивность его увеличивается в области низких частот.

Поскольку величина тока, протекающего через резистор, зависит от величины приложенного напряжения U, то в первом приближении можно считать, что

Ei=K,U (2.11)

где Кi коэффициент, зависящий от конструкции резистора, свойств резистивного слоя и полосы частот. Величина , Кi указывает в ТУ и лежит в пределах от 0,2 до 20 мкВ/В. Чем однороднее структура, тем меньше токовый щум. У металлопленочных и углеродистых резисторов величина Кi Ј1,5 мкВ/В, у композиционных поверхностных Кi Ј40 мкВ/В, у композиционных объемныхКi Ј45 мкВ/В. У проволочных резисторов токовый шум отсутствует. Токовый щум измеряется в полосе частот от 60 до 6000 Гц. Его величина значительно превышает величину теплового шума.









Дата добавления: 2015-08-26; просмотров: 5390;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.