Высокомегаомные и высоковольтные резисторы. Резисторы специального назначения
В ы с о к о м е г а о м н ы е р е з и с т о р ы, отличительной особенностью которых является низкий уровень номинальной мощности рассеивания (порядка десятков милливатт и меньше), имеют сопротивление от единиц – десятков мегаом до тысячи гигаом. Точность этих резисторов ± (5 ÷ 30) %, ТКС≈10-31/оС, рабочие напряжения – сотни вольт, изменение сопротивления к концу срока службы 10 – 30%. Высокомегаомные резисторы применяют в измерительной РЭА (для измерения весьма слабых токов низкой частоты, в дозиметрах излучений и д.р.).
Повышенные значения сопротивлений высокомегаомных резисторов получают применением композиций со значительным удельным сопротивлением в виде тонких пленок, что ограничивает мощность, рассеиваемую на поверхности резисторов, до единиц – долей милливатт.
В ы с о к о в о л ь т н ы е р е з и с торы, имеют предельные рабочие напряжения порядка.десятков киловольт; номинальные сопротивления – сотни килоом – десятки гигаом, точность 10 – 20%, ТКС = 10-3 1/оС и изменяют сопротивление к концу срока службы на 10 – 25%. Номинальная мощность рассеивания колеблется от десятков милливатт до десятков ватт. Эти резисторы применяют в высоковольтных цепях передающей и другой РЭА в качестве делителей напряжения, поглотителей и др, некоторые типы высокомегаомных и высоковольтных резисторов приведены – на рис. 78, в, г.
Высокомегаомные резисторы КИМ-Е (композиционный изолированный малогабаритный), номинальная мощность рассеивания которых равна 0,125 и 0,05 Вт, имеют соответственно длину 8 и 3,8 мм и диаметр 2,5 и 1,8 мм. Примерно аналогичны по конструкции резисторы С3-10.
Высоковольтные резисторы С3-6 цилиндрической формы с радиальными выводами, номинальная мощность рассеивания которых равна 0,5 и 1 Вт, имеют соответственно диаметр 5,7 и 9,5 мм и длину 26 и 47 мм. Резистор С3-14 может быть как высоковольтным, так и высокомегаомным. Во втором случае его предельные рабочие напряжения не превышают 350 В (при номинальной мощности рассеивания от 0,01 до 0,125 Вт).
Резисторы специального назначения (рис. 78,д – ж) основаны на принципах изменения сопротивления в зависимости от приложенного напряжения (варисторы), освещенности (фоторезисторы), температуры (терморезисторы) или мощности (термисторы). Эта группа резисторов по эксплуатационным параметрам и их диапазонам не может быть охарактеризована как единое целое. Обычно такие резисторы применяют в качестве измерителей, стабилизаторов и преобразователей различного рода сигналов в электрические сигналы и используют в аппаратуре автоматики и телемеханики, а также измерительной и индикаторной РЭА.
Резисторы интегральных микросхем.Все элементы полупроводниковых ингегральных схем транзисторы, диоды, резисторы и конденсаторы) создаются на базе р-n-переходов в теле кремниевой подложки методами, эпитаксии и диффузии. Резисторы полупроводниковых схем получают в базовой облости и их сопротивление определяется ее сопротивлением, которое лежит в пределах от 25 Ом до единиц килоом. Технологическая точность резисторов не превышает ± 30%, а ТКС = ±103,1/оС.
Резисторы толстоплёночных микросхем получают методом шелкографии – нанесение через трафареты на поверхность керамических подложек (керамики 22ХС) специальных паст с последующим их вжиганием (методом горячей керамики).
Наибольшее распространение в микроэлектронной технике специального назначения получили тонкоплёночные микросхемы, на базе которых создаются большие гибридные интегральные схемы. Объясняется это тем, что тонкоплёночная технология позволяет расширить пределы номинальных значений параметров элементов и получить более высокую точность, стабильность и надёжность.
Резисторы тонкопленочных схем создают, напыляя металлы или другие токопроводящие вещества обычно на ситалловые подложки. Конфигурация резисторов определяется топологией (размещением и размерами) резистивного слоя масок, через “окна” в которых проводится напыление. При этом используют как вакуумное термическое испарение, так и катодное распыление. Процесс напыления выполняют в специальных вакуумных установках.
Маски могут быть металлическими и фоторезистивными. Фоторезистивные маски получают методом фотолитографии, разрешающая способность которого составляет единицы микрометра. Однако из технологических и точностных соображений минимально допустимую ширину “окна” в маске выбирают равной 50-100 мкм. Для напыления резисторов применяют сплав МЛТ-ЗМ, тантал, керметы и силициды.
Основным параметром напыляемого материала является сопротивление квадрата его поверхности ρٱ= ρυ/d, где ρυ- удельное обьёмное сопротивление, Ом • см; d – толщина напыляемой пленки, см.
Важными параметрами для, расчета тонкопленочных резисторов являются также ТКС и удельная мощность рассеивания Р0. Основные параметры тонкопленочных резисторов, получаемых на основе различных напыляемых материалов, приведены в табл. 24
Таблица 24. Основные параметры тонкоплёночных резисторов
Материал | ρٱОм/ٱ | ТКС = ±10-4,1/оС | Р0, мВт/мм2 |
МЛТ-3М Тантал Керметы Силициды | 200-500 300-1000 2000-10000 4000-5000 | ±(1,2÷2,4) ±(0,1÷1) ±(0,5÷7) - |
Рис. 79. Геометрия тонкопле- очного резистора
типа “меандр”:
1ср и b – средняя длина и ширинарезистора, t, a, L и В–шаг, расстояние между звеньями, длина и ширина меандра
Тонкопленочные резисторы могут иметь форму полоски или меандра (рис. 79) и обладают рядом преимуществ перед полупроводниковыми: они более стабильны (± 10-41/оС), точны (до ± 5%) и имеют диапазон номиналов сопротивлений до 100 кОм, который обычно ограничивается в пределах от 50 Ом до 50 кОм.
Дата добавления: 2015-08-26; просмотров: 3683;