Нормальный закон распределения

В теории вероятностей и математической статистике, в различ­ных приложениях важную роль играет нормальный закон рас­пределения (закон Гаусса). Случайная величина распределена по этому закону, если плотность вероятности ее имеет вид

где α = М(Х) — математическое ожидание случайной величины; — среднее квадратическое отклонение; следовательно, дисперсия случайной величины.

Изменение а при постоянной а не влияет на форму кривой, а лишь сдвигает ее вдоль оси абсцисс. Площадь, заключенная под кривой, согласно условию нормировки, равна единице. На рисунке 2.1 изображены три кривые. Для кривых 1 и 2 а = 0, эти кривые отличаются зна­чением σ (σ1 < σ2); кривая 3 имеет а = 0 (σ = σ2). Вычислим функцию распределения (2.19) для этого случая:

Обычно используют иное выражение функции нормального распределения. Введем новую переменную t = (x-a)/σ, следовательно, dx = σdt. Подставив эти значения в (2.23), получим

 

Значения функции Ф(t) обычно находят в специально составленных таблицах (см. [2]), так как интеграл (2.24) через элементарные функции не выражается. График функции Ф(t) изображен рисунке 2.2.На основании (2.17) можно вычислить вероятность того, что случайная величина при нормальном распределении находится в интервале (x1 x2). Без вывода, по аналогии с (2.24), укажем, что эта вероятность равна

 

 

 

 

Воспользуемся выражением (2.25) для вычисления следующих вероятностей:

 

Отметим, что Ф(-t) = 1 - Ф(t), поэтому Р = 2Ф(1) - 1. По таб­лице находим Ф(+1) = 0,8413. откуда

 

По таблице находим Ф(2) = 0,9772, откуда

 

По таблице находим Ф(3) = 0,9986. откуда

 

 

На рисунке 2.3 приведено нормальное распределение (σ = 0) и штриховкой показаны области, площади которых равны вероят­ностям 0,683 и 0,954.

Допустим, что произвольно из нормального распределения вы­бираются группы по п значений случайных величин. Для каждой группы можно найти средние значения, соответственно x1, х2, ..., xi, ... . Эти средние значения сами образуют нормальное распреде­ление (в отличие от изложенного выше нормального распределе­ния здесь каждому среднему значению xi будет соответствовать не вероятность, а относительная частота). Математическое ожидание такого «нового» нормального распределения равно математическому ожиданию исходного нормального распределения, а дисперсия (Dn) и среднее квадратическое отклонение (σп) отличаются соответственно в п и в √n раз относительно этих характеристик исходного распределения:

Это положение здесь не доказывается, но его можно проиллюстрировать рисунком 2.4, на котором приведены графики нормальных распределений, полученных для групп со значениями п, активными 1,4, 16, и n→∞. Рассмотрим крайние частные случаи. При п = 1 приходим к исходному нормальному распределению, потому σn = σ. При п →∞ σn → 0; фактически в этом случае «группами случайных величин» — это все исходное распределение, Других групп нет, поэтому среднее значение выражается только одним числом и оно соответствует математическому ожиданию. юсе распределение сводится к этому значению математического ожидания (на графике представлено вертикальной линией).

 








Дата добавления: 2015-06-22; просмотров: 831;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.