Распределение частиц по потенциальным энергиям в си­ловых полях — гравитационном, электрическом и др. — называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высоты h над уровнем Земли или от потенциальной энер­гии молекулы m0gh:

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.

Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических

объяснить тем, что на молекулы оказывают влияние два противоположных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическое движение, стремящееся равномерно разбросать молекулы по всему , возможному объему.

В заключение полезно заметить некоторое сходство экспоненциальных членов в распределениях Максвелла и Больцмана:

 

Г ЛАВА 3

Математическая статистика

Методы математической статистики позволяют систематизи­ровать и оценивать экспериментальные данные, которые рассматриваются как случайные величины.

Основные понятия математической статистики

В главе 2 были рассмотрены некоторые понятия и закономер­ности, которым подчинены массовые случайные явления. Одной из практических задач, связанных с этим, является создание методов отбора данных (статистические данные) из большой совокупности и их обработки. Такие вопросы рассматриваются в мате­матической статистике.

Математическая статистика наука о математиче­ских методах систематизации и использования статистиче­ских данных для решения научных и практических задач. Ма­тематическая статистика тесно примыкает к теории вероятностей и базируется на ее понятиях. Однако главным в математической статистике является не распределение случайных величин, а ана­лиз статистических данных и выяснение, какому распределению они соответствуют.

Предположим, что необходимо изучить множество объектов по какому-либо признаку. Это возможно сделать, либо проведя сплош­ное наблюдение (исследование, измерение), либо не сплошное, выбо­рочное.

Выборочное, т. е. неполное, обследование может оказаться предпочтительнее по следующим причинам. Во-первых, естест­венно, что обследование части менее трудоемко, чем обследование целого; следовательно, одна из причин — экономическая. Во-вто­рых, может оказаться и так, что сплошное обследование просто нереально. Для того чтобы его провести, возможно, нужно унич­тожить всю исследуемую технику или загубить все исследуемые биологические объекты. Так, например, врач, имплантирующий электроды в улитку для кохлеарного протезирования (см. § 6.5), должен иметь вероятностные представления о расположении улитки слухового аппарата. Казалось бы, наиболее достоверно та­кие сведения можно было получить при сплошном патологоанатомическом вскрытии всех умерших с производством соответствую­щих замеров. Однако достаточно собрать нужные сведения при выборочных измерениях.

Большая статистическая совокупность, из которой отбирается часть объектов для исследования, называется генеральной сово­купностью, а множество объектов, отобранных из нее, — выбо­рочной совокупностью, или выборкой.

Свойство объектов выборки должно соответствовать свойству объектов генеральной совокупности, или, как принято говорить, выборка должна быть представительной (репрезентативной). Так, например, если целью является изучение состояния здо­ровья населения большого города, то нельзя воспользоваться вы­боркой населения, проживающего в одном из районов города. Ус­ловия проживания в разных районах могут отличаться (различ­ная влажность, наличие предприятий, жилищных строений и т. п.) и таким образом, влиять на состояние здоровья. Поэтому выбор­ка должна представлять случайно отобранные объекты.

Если записать в последовательности измерений все значения величины х в выборке, то получим простой статистический ряд. Например, рост мужчин (см): 171, 172, 172, 168, 170, 169, ... . Та­кой ряд неудобен для анализа, так как в нем нет последователь­ности возрастания (или убывания) значений, встречаются и по­вторяющиеся величины. Поэтому целесообразно ранжировать ряд, например, в возрастающем порядке значений и указать их повторяемость. Тогда статистическое распределение выборки:

Здесь xi — наблюдаемые значения признака (варианта); ni — Число наблюдений варианты xi (частота); рi* — относительная Частота. Общее число объектов в выборке (объем выборки)

всегo k вариант. Статистическое распределение — это совокупность вариант и соответствующих им частот (или относительных растет), т. е. это совокупность данных 1-й и 2-й строки или 1-й и 3-й строки в (3.1).

В медицинской литературе статистическое распределение, со­стоящее из вариант и соответствующих им частот, получило название вариационного ряда.

Наряду с дискретным (точечным) статистическим распределением, которое было описано, используют непрерывное (интер­вальное) статистическое распределение:

Здесь xl _ 1, xi — 1-й интервал, в котором заключено количествен­ное значение признака; ni — сумма частот вариант, попавших в этот интервал; р* — сумма относительных частот.

В качестве примера дискретного статистического распределения укажем массы новорожденных мальчиков (кг) и частоты (табл. 5).

 

Таблица 5

2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 4,0 4,1 4,2 4,3 4,4

Общее количество мальчиков (объем выборки)

Можно это распределение представить и как непрерывное (интер­вальное) (табл. 6).

Таблица 6

2,65-2,75 2,75-2,85 2,85-2,95 2,95-3,05 3,05-3,15

Для наглядности статистические распределения изображают графически в виде полигона и гистограммы.

Полигон частот — ломаная линия, отрезки которой соединяют точки с координатами (х1; п1), (х2; п2), ... или для полигона относи­тельных частот — с координатами (x1; р*), (х2; р*), ... (рис. 3.1). Рис. 3.1 относится к распределению, представленному в табл. 5.

Гистограмма частот — совокупность смежных прямоуголь­ников, построенных на одной прямой линии (рис. 3.2), основания

прямоугольников одинаковы и равны а, а высоты равны отноше­нию частоты (или относительной частоты) к а:


 







Таким образом, площадь каждого прямоугольника равна соответ­ственно

 

Следовательно, площадь гистограммы частот и площадь гистограммы относительных частот

Наиболее распространенными характеристиками статистическо­го распределения являются средние величины: мода, медиана и средняя арифметическая, или выборочная средняя.

Мода (Мо) равна варианте, которой соответствует наиболь­шая частота. В распределении массы новорожденных (см. табл. 5) Мо = 3,3кг.

Медиана (Me) равна варианте, которая расположена в середи­не статистического распределения. Она делит статистический (ва­риационный) ряд на две равные части. При четном числе вариант за медиану принимают среднее значение из двух центральных ва­риант. В рассмотренном распределении (см. табл. 5) Me = 3,4 кг. Выборочная средняя (хв) определяется как среднее арифмети­ческое значение вариант статистического ряда:

 

Для примера (см. табл. 5)

 

Для характеристики рассеяния вариант вокруг своего среднего значения хв вводят характеристику, называемую выборочной дисперсией, — среднее арифметическое квадратов отклонения ва­риант от их среднего значения:

Квадратный корень из выборочной дисперсии называют выбороч­ный средним квадратическим отклонением:

Для примера (см. табл. 5)

 

 








Дата добавления: 2015-06-22; просмотров: 1066;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.