Проверка гипотез

В медико-биологических исследованиях актуальной является задача сравнения выборок, полученных в результате эксперимен­та, заключающегося в том или ином воздействии на объект. Фак­тически конечный результат исследования зависит от достовер­ности различий значений случайной величины в контроле (до воз­действия или без него) и опыте (после воздействия). Наиболее просто решается задача определения достоверности различий ста­тистических распределений, если предварительно для выборок рассчитаны доверительные интервалы. Положим, есть два статис­тических распределения некоторых случайных величин X и У. Пусть генеральные средние этих распределений с доверительной вероятностью р = 0,95 находятся в доверительных интервалах в ± ех) и в ± s ), и пусть при этом ув > хв. Если соблюдается нера­венство (г/в - ε ) > в + ε), то не вызывает сомнения, что случай­ная величина У существенно больше случайной величины X (см. рис. 3.3, а). Вероятность этого превышает 0,95.

На рис. 3.3, б представлен вариант, когда выборки частично пе­ресекаются, т. е. когда выполняется неравенство (ув - еу) < (хв + гх). В этом случае целесообразно оценивать достоверность различий вы­борочных средних хв и ув с помощью дополнительных расчетов. Наиболее просто это сделать, предполагая, что случайные величи­ны X и У распределены по нормальному закону. Условием сущест­венности различия двух опытных распределений, являющихся вы­борками из различных генеральных совокупностей, является вы­полнение следующего неравенства для опытного и теоретического значений критерия Стьюдента: toa > teop. Для нахождения значе­ния tов используют следующую формулу:

Здесь σх и σy — выборочные средние квадратические отклоне­ния, пх и пу — число вариант в выборках (объемы выборок), хв и yв — выборочные средние значения.

 

Теоретическое значение tTeop находят по таблице 10, входными величинами которой являются доверительная вероятность р и па­раметр , связанный с числом вариант в выборках. Этот параметр определяют следующим образом. Если ах ≈σ , то f = пх + п - 2. Если же ах и а различаются на порядок и более, то величина определяется по формуле:

Используя этот способ оценки достоверности различия выбо­рочных средних значений двух выборок, следует придерживаться такой последовательности действий. Во-первых, по эксперимен­тальным данным нужно найти значения выборочных средних и средних квадратических отклонений для каждой выборки. За­тем, сравнив величины σх и σy, найти величину f. После этого сле­дует задать определенное значение доверительной вероятности и по таблице 10 найти tтеор. Затем по формуле (3.30) рассчитать ion.

Если при сравнении теоретического и опытного критериев Стьюдента окажется, что tou > tTeop, то различие между выборочными средними значениями случайных величин X и Y можно считать существенным с заданной доверительной вероятностью. В проти­воположном случае различия несущественны.

Представленный выше способ оценки достоверности различий выборок по выборочным средним является довольно простым. Су­ществует большое число тестов и критериев для сравнения выбо­рок и составления заключения о достоверности их различий. Как правило, при этом рассматривают вероятность двух взаимоисклю­чающих гипотез. Одна из них, условно называемая «нулевой» ги­потезой, заключается в том, что наблюдаемые различия между вы­борками случайны (т. е. фактически различий нет). Альтернатив­ная гипотеза означает, что наблюдаемые различия статистически достоверны. При этом для оценки обоснованности вывода о досто­верности различий используют три основных доверительных уров­ня, при которых принимается или отвергается нулевая гипотеза. Первый уровень соответствует уровню значимости (30 < 0,05) для второго уровня ро < 0,01. Наконец, третий доверительный уровень имеет р0 < 0,001. При соблюдении соответствующего условия ну­левая гипотеза считается отвергнутой. Чем выше доверительный уровень, тем более обоснованным он считается. Фактически значи­мость вывода соответствует вероятности р = 1 . В медицинских и биологических исследованиях считают достаточным уже первый уровень, хотя наиболее ответственные выводы предпочтительнее делать с большей точностью. Одной из методик, позволяющих су­дить о достоверности различий статистических распределений, яв­ляется ранговый тест Уилкоксона. Под рангом (Ri) понимают но­мер, под которым стоят исходные данные в ранжированном ряду. Если в двух сравниваемых выборках данному номеру соответству­ют одинаковые варианты, то рангом этих вариант является сред­нее арифметическое двух рангов — данного и следующего за ним (см. пример). Покажем, как используется этот тест на примере сравнения двух равных по объему выборок.

Измеряли массу 13 недоношенных новорожденных (в граммах) в двух районах А и Б большого промышленного центра, один из которых (Б) отличался крайне неблагоприятной экологической обстановкой. По­лучены два статистических распределения (А) и (Б):

А: 970 990 1080 1090 1110 1120 ИЗО 1170 1180 1180 1210 1230 1270

Б: 780 870 900 900 990 1000 1000 1020 1030 1050 1070 1070 1100

Следует решить вопрос о том, достоверны ли различия между этими статистическими распределениями.

Составим общий ранжированный ряд с указанием номеров соответст­вующих вариант (RA Б) — рангов (строки А и Б соответствуют выборкам):

Как видно, варианта 990 встречается в первой и второй выборках, по­этому для нее рангом является среднее арифметическое значение 6 и 7.

Далее в ряду остаются лишь варианты первой выборки, поэтому ряд не закончен. Нулевая гипотеза состоит в том, что различий между выбор­ками нет (они случайны и потому несущественны). Ранговый тест учиты­вает общее размещение вариант и размеры выборок, но не требует знания типа распределения. Основной вывод о верности нулевой гипотезы дела­ется на основании анализа минимальной суммы рангов (из двух сумм для сравниваемых выборок), т. е. критерием является величина Т = ЯБ (учитывая, что Rв < Z -RA). При этом пользуются специальными табли­цами. В частности, если число вариант в выборках одинаково (п1 = п2).

Критические значения величины r (теста Уилкоксона) при п1 = п2 = п для разных значений уровня значимости/

В этой таблице указаны две входные величины: число вариант в вы­борках и значение третьего и второго уровней значимости (Ро = 0,05 и 0,01). В нашем случае Т = RB = 110,5, что меньше табличного значе­ния для п = 13 и βо < 0,01. Следовательно, на втором уровне значимости (р > 0,99) можно отвергнуть нулевую гипотезу. Таким образом, различия выборок достоверны с вероятностью, превышающей 0,99.








Дата добавления: 2015-06-22; просмотров: 642;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.