Понятие о статистической достоверности

Статистическая достоверность имеет существенное значение в расчетной практике ФКС. Ранее было отмечено, что из одной и той же генеральной совокупности может быть избрано множество выборок:

- если они подобраны корректно, то их средние показатели и показатели генеральной совокупности незначительно отличаются друг от друга величиной ошибки репрезентативности с учетом принятой надежности;

- если они избираются из разных генеральных совокупностей, различие между ними оказывается существенным. В статистике по­всеместно рассматривается сравнение выборок;

- если они отличаются несущественно, непринципиально, не­значительно, т. е. фактически принадлежат одной и той же гене­ральной совокупности, различие между ними называется стати­стически недостоверным.

Статистически достоверным различием выборок называется выборка, которая различается значимо и принципиально, т. е. при­надлежит разным генеральным совокупностям.

В ФКС оценка статистической достоверности различий выбо­рок означает решение множества практических задач. Например, введение новых методик обучения, программ, комплексов упраж­нений, тестов, контрольных упражнений связано с их экспери­ментальной проверкой, которая должна показать, что испытуе­мая группа принципиально отлична от контрольной. Поэтому при­меняют специальные статистические методы, называемые крите­риями статистической достоверности, позволяющие обнаружить наличие или отсутствие статистически достоверного различия между выборками.

Все критерии делятся на две группы: параметрические и непараметрические. Параметрические критерии предусматривают обязательное наличие нормального закона распределения, т.е. имеется в виду обязательное определение основных показателей нормального закона — средней арифметической величины х и среднего квадратического отклонения о. Параметрические крите­рии являются наиболее точными и корректными. Непараметри­ческие критерии основаны на ранговых (порядковых) отличиях между элементами выборок.

Приведем основные критерии статистической достоверности, используемые в практике ФКС: критерий Стьюдента, критерий Фишера, критерий Вилкоксона, критерий Уайта, критерий Ван-дер-Вардена (критерий знаков).

Критерий Стьюдента назван в честь английского ученого К. Госсета (Стьюдент — псевдоним), открывшего данный метод. Критерий Стьюдента является параметрическим, используется для сравнения абсолютных показателей выборок. Выборки могут быть различными по объему.

Критерий Стьюдента определяется так.

1. Находим критерий Стьюдента t по следующей формуле:

f_

+ т

(2,18)

где Xi, x2 — средние арифметические сравниваемых выборок; /яь w2 — ошибки репрезентативности, выявленные на основании показателей сравниваемых выборок.

2. Практика в ФКС показала, что для спортивной работы доста­точно принять надежность счета Р = 0,95.

63 Для надежности счета: Р= 0,95 (а = 0,05), при числе степеней ; свободы k = «! + п2 - 2 по таблице приложения 4 находим величи- \ ну граничного значения критерия (^гр).

3. На основании свойств нормального закона распределения в критерии Стьюдента осуществляется сравнение t и t^.

4. Делаем выводы:

- если t > ftp, то различие между сравниваемыми выборками статистически достоверно;

- если t < 7Ф, то различие статистически недостоверно.

Для исследователей в области ФКС оценка статистической до­стоверности является первым шагом в решении конкретной зада­чи: принципиально или непринципиально различаются между; собой сравниваемые выборки. Последующий шаг заключается в; оценке этого различия с педагогической точки зрения, что опре­деляется условием задачи.

Рассмотрим применение критерия Стьюдента на конкретном-примере.

Пример 2.14. Группа испытуемых в количестве 18 человек оценена на ЧСС (уд./мин) до xt и после у, разминки.

Оценить эффективность разминки по показателю ЧСС. Исход­ные данные и расчеты представлены в табл. 2.30 и 2.31.

Таблица 2.30








Дата добавления: 2015-06-17; просмотров: 5106;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.