Определение ускорений точек плоской фигуры
Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда
.
В правой части этого равенства первое слагаемое есть ускорение полюса А, а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A. следовательно,
.
Значение , как ускорения точки вращающегося твердого тела, определяется как
где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).
Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А, принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).
Однако вычисление с помощью параллелограмма, изображенного на рис.23, усложняет расчет, так как предварительно надо будет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и представить в виде
.
При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же
.
Если полюс А движется не прямолинейно, то его ускорение можно тоже представить как сумму касательной и нормальной составляющих, тогда
.
Рис.41 Рис.42
Наконец, когда точка М движется криволинейно и ее траектория известна, то можно заменить суммой .
Дата добавления: 2015-06-17; просмотров: 1246;