Закон Ампера. Взаимодействие параллельных токов.
Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила d ,с которой магнитное поле действует на элемент проводника d с током, находящийся в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длиной d проводника на магнитную индукцию :
(3.3.1)
Направление вектора d может быть найдено, согласно (3.3.1), по общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор , а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.
Модуль силы Ампера вычисляется по формуле
(3.3.2)
где a -угол между векторами d и .
Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2 (направления токов указаны на рис. 3.3.2), расстояние между которыми равно R.
Каждый из проводников создает магнитное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током 12.
Ток I1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора задается правилом правого винта, его модуль по формуле (3.3.2) равен
Рис.3.3.1
Направление силы d 1 , с которой поле 1 действует на участок dl, второго тока, определяется по правилу левой руки и указано на рис 3.3.1. Модуль силы,
согласно (3.3.2), с учетом того, что угол, а между элементами тока 12 и вектором
1 прямой равен
или, подставляя значения для В1 , получим
(3.3.3)
Рассуждая аналогично, можно показать, что сила dF2, с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1, направлена в противоположную сторону и по модулю равна
(3.3.4)
Сравнение выражений (3.10) и (3.11) показывает, что
т.е. два параллельных тока одинакового направления притягиваются друг к другу с силой
(3.3.5)
Если токи имеют противоположные направления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания.
Дата добавления: 2015-06-01; просмотров: 1723;