ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 7 страница

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами (у живот­ных они Могут поворачиваться к источнику звука) и передаются по наружному слуховому проходу к барабанной перепонке, которая от­деляет наружное ухо от среднего. Улавливание звука и весьпроцесс слушания двумя ушами — так называемый бинауральный слух — имеет значение для определения направления звука. Звуко­вые колебания, идущие сбоку, доходят до ближайшего уха на не­сколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обо­им ушам достаточно, чтобы определить его направление.

Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки—молоточек, наковальня и стре- мячко, а последнее через перепонку овального окна передает эти коле­бания жидкости, находящейся во внутреннем ухе, — перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздра­жителя и предохраняя внутреннее ухо от разрушения. Благодаря со­единению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давле­ния по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде — при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.

Внутреннее ухо является звуковоспринимающим аппаратом. Оно расположено в пирамидке височной кости и содержит улитку, которая у человека образует 2.5 спиральных витка. Улитковый канал разделен двумя перегородками основной мембраной и вестибулярной мембраной на 3 узких хода: верхний (вестибулярная лестница), сред­ний (перепончатый канал) и нижний (барабанная лестница). На вер­шине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость его заполнена жидкостью — пери- лимфой, а полость среднего перепончатого канала заполнена жидко­стью иного состава — эндолимфой. В среднем канале расположен звуковоспринимаюший аппарат—Ко ртие в орган, в котором находятся механорецепторы звуковых колебаний—волосковые клетки.

7.6.3. ФИЗИОЛОГИЧЕСКИЙ МЕХАНИЗМ ВОСПРИЯТИЯ ЗВУКА

Восприятие звука основано на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наиболь­шего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуж­дение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зави­сит высота столба колеблющейся жидкости и соответственно место наибольшего смещения основной мембраны: звуки высокой частоты дают наибольший эффект на начале основной мембраны, а низких частот —доходят до вершины улитки. Таким образом, при различных по частоте звуках возбуждаются разные волосковые клетки и раз­ные нервные волокна, т. е, осуществляется пространственный код. Увеличение силы звука приводит к увеличению числа возбужден­ных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.

Волоски рецепторых клеток погружены в покровную мем­брану. При колебаниях основной мембраны начинают смещаться находящиеся на ней волосковые клетки и их волоски механически раздражаются покровной мембраной. В результате в волосковых ре­цепторах возникает процесс возбуждения, который по афферентным волокнам направляется к нейронам спирального узла улитки и далее в ЦНС (рис. 16-Б).

Различают костную и воздушную проводимость звука. В обычных условиях у человека преобладает воздушная про­водимость — проведение звуковых колебаний через наружное и среднее ухо к рецепторам внутренего уха. В случае костной проводи­мости звуковые колебания передаются через кости черепа непосред­ственно улитке (например, при нырянии, подводном плавании).

Человек обычно воспринимает звуки с частотой от 15 до 20000Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000до 3000 Гц. Эта область соответ­ствует наиболее часто встречающимся частотам человеческой речи и музыки.

7.7. ВЕСТИБУЛЯРНАЯ СЕНСОРНАЯ СИСТЕМА

Вестибулярная сенсорная система служит для анализа положе­ния и движения тела в пространстве. Это одна из древнейших сенсорных систем, развившаяся в условиях действия силытяжес- ти на земле. Импульсы вестибулярного аппарата используются в организме для поддержания равновесия тела, для регуляции и со­хранения позы, для пространственной организации движений че­ловека.

7.7.1. ОБЩИЙ ПЛАН ОРГАНИЗАЦИИ

Вестибулярная сенсорная система состоит из следующих отделов:

1) периферический отдел включает два образования, содержащие механорецепторы вестибулярной системы—преддверие (мешочек и маточка) и полукружные каналы;

2) проводниковый отдел начинается от рецепторов волокнами биполярной клетки (первого нейрона) вестибулярного узла, расположенного в височной кости, другие отростки этих ней­ронов образуют вестибулярный нерв и вместе со слуховым нервом в составе 8-ой пары черепно-мозговых нервов входят в продолговатый мозг; в вестибулярных ядрах продолговатого мозга находятся вторые нейроны, импульсы откоторых поступают к третьим нейронам вта- ламусе (промежуточный мозг);

3) корковый отдел представляют четвертые нейроны, часть которых представлена в проекционном (первичном) поле вестибу­лярной системы в височной области коры, а другая часть—находится в непосредственной близости к пирамидным нейронам моторной об­ласти коры и в постцентральной извилине. Точная локализация кор­кового отдела вестибулярной сенсорной системы у человека в насто­ящее время не установлена.

7.7.2. ФУНКЦИОНИРОВАНИЕ ВЕСТИБУЛЯРНОГО АППАРАТА

Периферический отдел вестибулярной сенсорной системы нахо­дится во внутреннем ухе. Каналы и Полости в височной кости образу­ют костный лабиринт вестибуля рного аппарата, который частично заполнен перепончатым лабиринтом. Междукостным и перепонча­тым лабиринтами находится жидкость—перилимфа, а внутри пере­пончатого лабиринта—эндолимфа.

Аппарат преддверия предназначен для анализа действия силы тяжести при изменениях положения тела в пространстве и ус­корений прямолинейного движения. Перепончатый лабиринт преддве­рия разделен на 2 полости — мешочек и маточку, содержащих о т о - литовые приборы. Механорецепторыотолитовыхприборов представляют собой волосковые клетки. Они склеены студнеобраз­ной массой, образующей поверх волосков отолитовуюмембрану, в которой находятся кристаллы углекислого кальция — отолиты (рис. 16- В). В маточке отол итовая мембрана расположена в горизон­тальной плоскости, а в мешочке она согнута и находится во фрон­тальной и сагиттальной плоскостях. При изменении положения го­ловы и тела, атакже при вертикальных или горизонтальных ускоре­ниях отолитовые мембраны свободно перемащаются под действием


силы тяжести во всех трех плоскостях, натягивая, сжимая или сгибая при этом волоски механорецепторов. Чем больше деформация во­лосков, тем выше частота афферентных импульсов в волокнах вести­булярного нерва.

Аппарат полукружных каналов служит для анализа действия центробежной силы при вращательных движениях. Адек­ватным его раздражителем я в.1яется уztoeoe ускорение. Три дуги по­лукружных каналов распложены в трех взаимно перпендикулярных плоскостях: передняя — во фронтальной плоскости, боковая — в го­ризонтальной, задняя — в сагиттальной. В одном из концов каждого канала имеется расширение— ампула. Находящиеся в ней волоски чувствительных клеток склеены в гребешок — ампулярную ку пул у. Она представляет собой маятник, который может откло­няться в результате разности давления эндолимфы на противопо­ложные поверхности купулы (рис. 16-Г). При вращательных движе­ниях в результате инерцииэндолимфа отстает от движения костной части и оказывает давление на одну из поверхностей купулы. Откло­нение купулы изгибает волоски рецепторных клеток и вызывает по­явление нервных импульсов в вестибулярном нерве. Наибольшие из­менения в положении купулы происходят в том полукружном канале, положение которого соответствует плоскости вращения.

В настоящее время показано, что вращения или наклоны в одну сторону увеличивают афферентную импульсацию, а в другую сторо­ну— уменьшают ее. Это позволяет различать направление прямоли­нейного или вращательного движения.

7.7.3. ВЛИЯНИЯ РАЗДРАЖЕНИЙ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ НА ДРУГИЕ ФУНКЦИИ ОРГАНИЗМА

Вестибулярная сенсорная система связана со многими центрами спинного и головного мозга и вызывает ряд вестибуло-соматичес- ких и вестибуло-вегетативныхрефлексов.

Вестибулярные раздражения вызывают установочные рефлексы изменения тонуса мышц, лифтные рефлексы, а также особые движе­ния глаз, направленные на сохранение изображения на сетчатке, — нистагм (движения глазныхяблоксоскоростью вращения, но в противоположном направлении, затем быстрое возвращение к исхо- деной позиции и новое противоположное вращение).

Помимо основной анализаторной функции, важной для управле­ния позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбужде­ния на другие нервные центры при низкой устойчивости вестибулярного аппарата. Его раздражение приводит к снижению возбудимости зрительной и кожной сенсорных систем, ухудшению точности движений. Вестибулярные раздражения приводят к нару­шениям координации движений и походки, изменениям частоты сер­дцебиения и артериального давления, увеличению времени двига­тельной реакции и снижению частоты движений, ухудшению чув­ства времени, изменению психических функций — внимания, опера­тивного мышления, кратковременной памяти, эмоциональных проявлений, В тяжелых случаях возникают головокружения, тош­нота, рвота. Повышение устойчивости вестибулярной системы дос­тигается в большей мере активными вращениями человека, чем пассивными.

В условиях невесомости (когда у человека выключены вестибу­лярные влияния) возникает утрата представления о направлении гравитационной вертикали и пространственном положении тела. Те­ряются навыки ходьбы, бега. Ухудшается состояние нервной систе­мы, возникает повышенная раздражительность, нестабильность на­строения.

7.8. ДВИГАТЕЛЬНАЯ СЕНСОРНАЯ СИСТЕМА

Двигательная сенсорная система служит для анализа состояния двигательного аппарата—&го движения и положения. И нформация о степени сокращения скелетных мышц, натяжении сухожилий, изме­нении суставных углов необходима для регуляции двигательны ак­тов и поз.

7.8.1. ОБЩИЙ ПЛАН ОРГАНИЗАЦИИ

Двигательная сенсорная система состоит из следующих 3-х от­делов:

^периферический отдел, представленный проприо- рецепторами, расположенными в мышцах, сухожилиях и суставных сумках;

2) проводниковый отдел, который начинается биполяр­ными клетками (первыми нейронами), тела которых расположены вне ЦНС — в спинномозговых узлах. Один их отросток связан с ре­цепторами, другой входит в спинной мозг и передает проприоцеп- тивные импульсы ко вторым нейронам в продолговатый мозг (часть путей от проприорецепторов направляется в кору мозжечка), а далее ктретьим нейронам — релейным ядрам таламуса (в промежуточный мозг);

3) корковый отдел находится в передней центральной извилине коры больших полушарий.

7.8.2. ФУНКЦИИ ПРОПРИОРЕЦЕПТОРОВ

Кпроприорецепторам относятся мышечные веретена, сухожиль­ные органы (или органы Гольджи) и суставные рецепторы (рецепторы суставной капсулы и суставных связок). Все эти рецепторы представ- ляютсобой механорецепторы, специфическим раздражителем которых является их растяжение.

Мышечные веретена прикрепляютсякмышечньшволокнам параллельно—один конец к сухожилию, а другой — к волокну. Каж­дое веретено покрыто капсулой, образованной несколькими слоями клеток, которая в центральной части расширяется и образует ядер- ную сумку. Внутри веретена содержится несколько (от 2 до 14) тонких внутриверетенных или так называемых интрафузаль- н ы х мышечных волокон. Эти волокна в 2-3 раза тоньше обычных волокон скелетных мышц (экстрафузальны^с).

Интрафузальные волокна подразделяются на два типа: 1)^ин- ные, толстые, с ядрами в ядерной сумке, которые связаны с наиболее толстыми и быстропроводящими афферентными нервными волок­нами — они информируют о динамическом компоненте движения (скорости изменения длины мышцы) и 2) короткие, тонкие, с ядра­ми, вытянутыми в цепочку, информирующие о статическом ком­поненте (удерживаемой в данный момент длине мышцы). Оконча­ния афферентных нервных волокон намотаны на интрафузальные волокна рецептора. При растяжении скелетной мышцы происходит растяжение и мышечных рецепторов, которое деформирует окон­чания нервных волокон и вызывает появление в них нервных им­пульсов. Частота проприоцептивной импульсации возрастает с уве­личением растяжения мышцы, атакже при увеличении скорости ее растяжения. Тем самым нервные центры информируются о скорос­ти растяжения мышцы и ее длине. Вследствие малой адаптации импульсация от мышечных веретен продолжается в течение всего периода поддержания растянутого состояния, что обеспечивает по­стоянную осведомленность центров о длине мышцы. Чем более тонкие и координированные движения осуществляют мышцы, тем больше в них мышечных веретен: у человека в глубоких мышцах шеи, связывающих позвоночник с головой, среднее их число со­ставляет 63, а в мышцах бедра и таза — менее 5 веретен на 1 г массы мышцы (рис.1б-Д).

ЦНС может тонко регулировать чувствительность проприоре - цепторов. Разряды мелких гамма-мотонейронов спинного мозга вызывают сокращение интрафузальных мышечных волокон по обе стороны от от ядерной сумки веретена. В результате средняя несократимая часть мышечного веретена растягивается, и дефор­мация отходящего отсюда нервного волокна вызывает повышение

его возбудимости. Притой же длине скелетной мышцы в нервные центры при этом будет поступать большее число афферентных им­пульсов. Это позволяет, во-первых, выделять проприоцептивную импульсацию на фоне другой афферентной информации и, во-вто­рых, увеличивать точность анализа состояния мышц. Повышение чувствительности веретен происходит во время движения и даже в предстартовом состоянии. Это объясняется тем, что в силу низкой возбудимости гамма-мотонейронов их активность в состоянии по­коя выражена слабо, а при произвольных движенияхи вестибуляр­ных реакциях она активируется. Чувствительность проприорецеп- торов повышается также при умеренных раздражениях симпатичес­ких волокон и выделении небольших доз адреналина.

Сухожильные органы) расположены в месте перехода мышечных волокон в сухожилия. Сухожильные рецепторы (оконча­ния нервных волокон) оплетают тонкие сухожильные волокна, ок­руженные капсулой. В результате последовательного крепления сухо­жильных органов к мышечным волокнам (а в ряде случаев — к мы­шечным веретенам), растяжение сухожильных механорецепторов происходит при напряжении мышц. Таким образом, в отличие от мышечных веретен, сухожильные рецепторы информируют нервные центры о степени напряжения мышц и скорости его развития.

Суставные рецепторы информируют о положении отдельных частей тела в пространстве и относительно друг друга. Эти рецепторы представляют собой свободные нервные окончания или окончания, заключенные в специальную капсулу. Одни сустав­ные рецепторы посылают информацию о величине суставного угла, т. е. о положении сустава. Их импульсация продолжается в течение всего периода сохранения данного угла. Она тем большей частоты, чем больше сдвиг угла. Другие суставные рецепторы возбуждаются только в момент движения в суставе, т. е. посылают информацию о скорости движения. Частота их импульсации возрастает с увеличени­ем скорости изменения суставного угла.

Сигналы, идущие от рецепторов мышечных веретен, сухожиль­ных органов, суставных сумок и тактильных рецепторов кожи, на­зывают кинестетическими, т. е. информирующими о движении тела. Их участие в произвольной регуляции движений различно. Сигналы от суставных рецепторов вызывают заметную реакцию в коре больших полушарий и хорошо осознаются. Благодаря им человек лучше воспринимает различия при движениях в суставах, чем различия в степени напряжения мышц при статических положе- нияхил и поддержании веса. Сигналы же от других проприорецепто- ров, поступающие преимущественно в мозжечок, обеспечивают бессознательную регуляцию, подсознательный контроль движе­ний и поз.

7.9. СЕНСОРНЫЕ СИСТЕМЫ КОЖИ, ВНУТРЕННИХ ОРГАНОВ, ВКУСА И ОБОНЯНИЯ

В коже и внутренних органах имеются разнообразные рецепто­ры, реагирующие на физические и химические раздражител и.

7.9.1. КОЖНАЯ РЕЦЕПЦИЯ

В коже представлена тактильная, температурная и болевая ре­цепция. На 1 см2 кожи, в среднем, приходится 12-13 Холодовых то­чек, 1-2тепловых, 25 тактильных и около 100 болевых.

Тактильная сенсорная система предназначена для анализа давления и прикосновения. Ее рецепторы представляют собой свободные нервные окончания и сложные образования (тельца МеЙ- снера, тельца Паччини), в которых нервные окончания заключены в специальную капсулу. Они находятся в верхних и нижних сЛоях кожи, в кожных сосудах, в основаниях волос. Особенно их много на пальцах рук и ног, ладонях, подошвах, губах. Это MexaHopeiienJ торы, реагирующие на растяжение, давление и вибрацию. Наибо­лее чувствительным рецептором является тельце Паччини, которое вызывает ощущение прикосновения при смещении капсулы лиш ь на 0.0001 мм. Чем больше размеры тельца Паччини,тем болеетолстыеи быстропроводящие афферентные нервы отходят от него. Они прово­дят кратковременные залпы (длительностью0.005 с), информирую­щие о начале и окончании действия механического раздражителя. Путь тактильной информации следующий: рецептор — 1-й нейрон в спинномозговых узлах — 2-й нейрон в спинном или продолговатом мозге — 3-й нейрон в промежуточном мозге (таламус)—4-й нейрон в задней центральной извилине коры больших полушарий (первийная соматосенсорная зона).

Температурная рецепция осуществляется Холодовыми рецепторами (колбы Краузе) и тепловыми (тельца Руффини, Гольд- жи-Маццони). При температуре кожи 31 -37°С эти рецепторы почти неактивны. Ниже этой границы холодовые рецепторы активизиру­ются пропорционально падению температуры, затем их активность падает и совсем прекращается при +12°С. При температуре выше 37°С активизируются тепловые рецепторы, достигая максимальной активности при +43°С, затем резко прекращают ответы.

Болевая рецепция, как считает большинство специалистов, не имеет специальных воспринимающих образований. Болевые раз­дражения воспринимаются свободными нервными окончаниями, а также возникаютпри сильных температурных и механически* раз­дражениях в соответствующих термо— и механорецепторах.

Температурные и болевые раздражения передаются в спинной мозг, оттуда в промежуточный мозг и в соматосенсорную область коры.

7.9.2. ВИСЦЕРОЦЕПТИВНАЯ (ИНТЕРОРЕЦЕПТИВНАЯ)

СЕНСОРНАЯ СИСТЕМА

Во внутренних органах имеется множество рецепторов, воспри­нимающих давление — барорецепторы сосудов, кишечного тракта и др., изменения химизма внутренней среды—хеморецепторы, ее тем­пературы —терморецепторы, осмотического давления, болевые раз­дражения. С их помощью безусловнорефлекторным путем регули­руется постоянство различных констант внутренней среды (поддер­жание гомеостаза), ЦНС информируется об изменениях во внутрен­них органах. Информация от интерорецепторов через блуждающий, чревный и тазовый нервы поступает в промежуточный мозгидалеев лобные и другие области коры головного мозга. Деятельность этой системы практически не осознается, она мало локализована, однако при сильных раздражениях она хорошо ощущается. Она участвует в формировании сложных ощущений—жажды, голода и др.

7.9.3. ОБОНЯТЕЛЬНАЯ И ВКУСОВАЯ СЕНСОРНЫЕ СИСТЕМЫ

Обонятельная и вкусовая сенсорные системы относятся к древ­нейшим системам. Они предназначены для восприятия и анализа хи­мическихраздражений, поступающих из внешней среды. X е м о р е - цепторы обоняния находятся в обонятельном эпителии верхних носовых ходов. Это — волосковые биполярные клетки, пе­редающие информацию через решетчатую кость черепа к клеткам обонятельной луковицы мозга и далее через обонятельный тракт к обонятельным зонам коры (крючек морского коня, извилина гиппо­кампа и другие). Различные рецепторы избирательно реагируют на разные молекулы пахучих веществ, возбуждаясь лишь теми молеку­лами, которые являются зеркальной копией поверхности рецептора. Они воспринимают эфирный, камфарный, мятный, мускусный и др. запахи, причем к некоторым веществам чувствительность необы­чайно высока.

Хеморецепторы вкуса представляют собой вкусовые луковицы, расположенные в эпителии языка, задней стенке глотки и мягкого неба. У детей их количество больше, а с возрастом—убыва­ет. Микроворсинки рецепторных клеток выступают из луковицы на поверхность языка и реагируют на растворенные в воде вещества. Их сигналы поступает через волокна лицевого и языко-глоточного не­рвов (продолговатый мозг) в таламус и далее в соматосенсорную об­ласть коры. Рецепторы разных частей языка воспринимают четы - ре основных вкуса: горького(задняячастьязыка),кислого(края языка), сладкого (передняя часть языка) и соленого (пердняя часть и края языка). Между вкусовыми ощущениями и химическим строе­нием вещества отсутствует строгое соответствие, так как вкусовые ощущения могут изменяться призаболевании, беременности, услов­но-рефлекторных воздействиях, изменениях аппетита. В формиро­вании вкусовых ощущений участвуют обоняние, тактильная, боле­вая и температурная чувствительность. Информация вкусовой сен­сорной системы используется для организации пищевого поведения, связанного(5добываниекм, выбором, предпочтением или отвергани- ем пищи, формированием чувства голода, сытости.

7.10. ПЕРЕРАБОТКА, ВЗАИМОДЕЙСТВИЕ И ЗНАЧЕНИЕ СЕНСОРНОЙ ИНФОРМАЦИИ

Сенсорная информация передается от рецепторов в высшие отде­лы мозга по двум основным путям нервной системы — специфическим и неспецифическим. Специфические проводящие пути составляют один из трех основных функциональных блоков мозга — блок при­ема, переработки и хранения информации. Это классические аффе­рентные пути зрительной, слуховой, двигательной идр. сенсорных систем. В обработке этой информации участвует и неспецифическая система мозга, не имеющая прямых связей с периферическими ре­цепторами, но получающая импульсы по коллатералям от всех вос­ходящих специфических систем и обеспечивающая их широкое вза­имодействие.

7.10.1. ОБРАБОТКА СЕНСОРНОЙ ИНФОРМАЦИИ В ПРОВОДНИКОВЫХ ОТДЕЛАХ

Анализ получаемых раздражений происходит во всех отделах сен­сорных систем. Наиболее простая форма анализа осуществляется в результате выделения специализированными рецепторами раздражи­телей различной модальности (свет, звук и пр.) из всех падающих на организм воздействий. При этом в одной сенсорной системе возмож­но уже более детальное выделение характеристик сигналов (цвето- различение фоторецепторами колбочек и др.).

Важной особенностью в работе проводникового отдела сенсор­ных систем является дальнейшая обработка афферентной информа­ции, которая заключается, с одной стороны, в продолжающемся ана­лизе свойств раздражителя, а с другой — в процессах их синтеза, в обобщении поступившей информации По мере передачи афферент­ных импульсов на более высокие уровни сенсорных систем увеличи­вается число нервных клеток, которые реагируют на афферентные сигналы более сложно,чем простые проводники. Например, на уров­не среднего мозга в подкорковых зрительных центрах имеются ней­роны, которые реагируют на различную степень освещенности и об­наруживают движение, в подкорковых слуховых центрах — нейро­ны, извлекающие информацию о высоте тона и локализации звука, деятельность этих нейронов лежит в основе ориентировочного реф­лекса на неожиданные раздражители.

Благодаря многим разветвлениям афферентных путей на уровне спинного мозга и подкорковых центров обеспечивается многократное взаимодействиеафферентных импульсов в пределах одной сенсорной системы, атакже взаимодействие между различными сенсорными сис­темами (вчастности, можноотметить чрезвычайнообширные взаимо­действия вестибулярной сенсорной системы со многими восходящими и нисходящими путями). Особенно широкие возможности для взаимо­действия различных сигналов создаются в неспецифической системе мозга, где к одному итомуже нейрону могут сходится (конвергировать) импульсы различного происхождения (от 30000 нейронов) и отразных рецепторов тела. Вследствие этого неспецифическая система играет большую роль в процессах интеграции функций в организме.

При поступлении вболее высокие уровни нервной системы проис- ходитрасширение сферы сигнализации, приходящей от одного рецепто­ра. Например, в зрительной системе сигналы одного рецептора связа­ны (через систему дополнительных нервных клеток сетчатки—гори­зонтальных и др.) с десятками ганглиозных клеток и могут, в принци­пе, передаватьинформациюлюбым корковым нейронам зрительной коры. С другой стороны, по мере проведения сигналов происходит сжатие информации. Например, одна ганглиозная клетка сетчатки объединяет информацию от сотни биполярных клеток и десятков ты­сяч рецепторов, т. е. такая информация поступает в зрительные нервы уже после значительной обработки, в сокращенном виде.

Существенной особенностью деятельности проводникового отде­ла сенсорных систем является передача без искажений специфической информации от рецепторов к коре больших полушарий. Большое кот личество параллельных каналов (в зрительном нерве 900000волокон, в слуховом — 30000 волокон) помогает сохранить специфику переда­ваемого сообщения, а процессы бокового (латерального) торможения изолировать эти сообщения от соседних клеток и путей.

Одной из важнейших сторон обработки афферентной информации является отбор наиболее значимых сигналов, осуществляемый восхо­дящими и нисходящими влияниями на различных уровнях сенсорных систем. В этом отборе участвует также неспецифический отдел не­рвной системы (лимбическая система, ретикулярная формация). Ак­тивируя или затормаживая многие центральные нейроны, он способ­ствует отбору наиболее значимой для организма информации. В отли­чие от обширных влияний среднемозговой части ретикулярной фор­мации, импульсация из неспецифических ядер таламуса воздействует лишь на ограниченные участки коры больших полушарий. Такое из­бирательное повышение активности небольшой территории коры имеетзначениев организации акта внимания, выделяя на общем аф­ферентном фоне наиболее важные вданный моментсообщения.

7.10.2. ОБРАБОТКА ИНФОРМАЦИИ НА КОРКОВОМ УРОВНЕ

В коре больших полушарий сложность обработки информации возрастает от первичных полей ко вторичным и третичным ее но­лям. Так, простые клетки первичных полей зрительной коры явля­ются детекторами черно-белых границ прямыхлиний, воспринима­емых мелкими участками сетчатки, а сложные и сверхсложные ней­роны вторичных зрительных полей выделяют длину линий, их углы наклона, различные контуры фигур, направление движения объек­тов, имеются клетки, опознающие знакомые лицалюдей и т. п.

Первичные поля коры осуществляют анализ раздражений опреде­ленной модальности, поступающих от связанных с ними специфи­ческих рецепторов. Этотакназываемыеядерные зоны анализаторов, по И. П. Павлову (зрительные., слуховые и др.). Ихдеятельность ле­жит в основе возникновения ощущений. Лежащие вокруг них вто­ричные поля (периферия анализаторов) получают отпервичных по­лей результаты обработки информации и преобразуют их в более сложные формы. Во вторичных полях происходит осмысливание по­лученной информации, ее узнавание, обеспечиваются процессы вос­приятия раздражений данной модальности. От вторичных полей от­дельных сенсорных систем информация поступает в задние третич­ные поля—ассоциативные нижнетеменные зоны, где происходит ин­теграция сигналов различной модальности, позволяющая создать цельный образ внешнего мира со всеми его запахами, звуками, крас­ками и т. п. Здесь на основе афферентных сообщений от разных час­тей правой и левой половины тела формируются сложные представ- ления человека о схеме пространства и схеме тела, которые обеспе­чивают пространственную ориентациюдвижений и точную адреса­цию моторных команд к различным скелетным мышцам. Эти зоны также имеют особое значение в хранении полученной информации. На основе анализа и синтеза информации, обработанной в заднем третичном поле коры, в ее передних третичных полях (передней лобной области) формируются цели, задачи и программы поведе­ния человека.

Важной особенностью корковой организации сенсорных систем является экранное или соматотопическое (лат.— соматикус — телесный, топикус — местный) представительство


функций. Чувствительные корковые центры первичных полей коры образуют как бы экран, отражающий расположение рецепторов на периферии, т. е. здесь имеются проекции «точка в точку». Так, в задней центральной извилине (общечувствительном поле) нейро­ны тактильной, температурной и кожной чувствительности пред­ставлены в том же порядке, что и рецепторы на поверхности тела, напоминая копию человечка (гомункулюса); в зрительной коре — как бы экран рецепторов сетчатки; в слуховой коре — в определен­ном порядке нейроны, реагирующие на определенную высоту зву­ков. Тот же принцип пространственного представительства инфор­мации наблюдается в переключательных ядрах промежуточного мозга, в коре мозжечка, что значительно облегчает взаимодействие различных отделов ЦНС.








Дата добавления: 2015-05-21; просмотров: 530;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.025 сек.