ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 10 страница
В настоящее время во многихтканяхтела обнаружено значительное количество сосудорасширяющих веществ. Таким эффектом обладает медутип, вырабатываемый мозговым слоем почек, и простог- ландины, обнаруженные в секрете предстательной железы. В подчелюстной и поджелудочной железах, в легких и коже установлено наличие весьма активного полипептида — брадикинина, который вызывает расслабление гладкой мускулатуры артериол и понижает кровяное давление. К сосудорасширяющим веществам также относятся ацетилхолин, образующийся в окончаниях парасимпатических ( нервов, и гистамин, находящийся в стенках желудка, кишечника, а также в коже и скелетных мышцах (при их работе).
Все сосудорасширяющие вещества, как правило, действуют мест- но, вызывая дилятацию капилляров и артериол. Сосудосуживающие вещества преимущественно оказывают общее действие на крупные кровеносные сосуды.
10. ДЫХАНИЕ
Дыханием называется совокупность физиологических процессов, обеспечивающих поступление кислорода в организм, использование его тканями для окислительно-восстановительных реакций и выведения из организма углекислого газа. Дыхательная функция осуществляется с помощью внешнего (легочного) дыха-
ния, переноса 02 к тканям и С02 от них, а также газообмена между тканями и кровью.
10.1. ВНЕШНЕЕ ДЫХАНИЕ
У человека внешнее дыхание обеспечивается трахеей, бронхами, бронхиолами и альвеолами, общее количество которых составляет около 700 миллионов. Площадь ал ьвеол равна 80-100 м2, а объем воздуха в них около 2-3 литров; объем воздухоносных путей — 150-180 мл. В обычных условиях альвеолы не спадаются, так как находящаяся на их внутренней поверхности жидкость содержит сурфактанты — вещества, снижающие поверхностное натяжение.
Газообмен между легкими и окружающей средой осуществляется за счет вдоха и выдоха. При вдохе объем легких увеличивается, давление в них становится ниже атмосферного, и воз- духпоступаетвдыхательные пути. Этот процесс носит активный характер и обусловлен сокращением наружных межреберных мышц и опусканием (сокращением) диафрагмы, в результате чего объем легких возрастает на 250-300 мл. Во время выдоха объем грудной полости уменьшается, воздух в легких сжимается, давление в них становится выше атмосферного, и воздух выходит наружу. Выдох в спокойном состоянии осуществляется пассивное счет тяжести грудной клетки и расслабления диафрагмы. Форсированный выдох происходит вследствие сокращений внутренних межреберных мышц, частично —за счет мышц плечевого пояса и брюшного пресса.
Важное значение для осуществления вдоха и выдоха имеет герметически замкнутая плевральная полость (щель), образованная висцеральным (покрывает легкое) и париетальным (выстилает грудную клетку изнутри) листками плевры и защищенная небольшим количеством жидкости. Давление в плевральной полости ниже атмосферного, которое еще больше снижается при вдохе, способствуя поступлению воздуха в легкие. При попадании воздуха или жидкости в плевральную полость легкие спадаются за счет их эластической тяги, дыхание становится невозможным и развиваются тяжелые осложнения — п н е в м о гид рото раке.
Количество воздуха, находящегося в легких после максимального вдоха, составляет общую емкость легких, величина которой у взрослого человека равна 4-6 л. В общей емкости легких принято выделять четыре составляющих ее компонента: дыхательный объем, резервный объем вдоха и выдоха и остаточный объем.
Дыхательный объем— это количество воздуха, проходящего через легкие при спокойном вдохе (выдохе) и равное 400-500 мл. Резервный объем вдоха (1.5-3 л) составляет воздух, который можно вдохнуть дополнительно после обычного вдоха, Р е- jcpsi'MM объемом выдоха (1-1.5 л) называется объем воздуха, который еще можно выдохнуть после обычного выдоха. Остаточный объем (1 -1.2 л) — это количество воздуха, которое остается влегких после максимального выдоха и выходиттолько при пневмотораксе. Сумма дыхательного воздуха, резервных объемов вдоха и выдоха составляет жизненную емкость легких (ЖЕЛ), равную 3.5-5 л; у спортсменов она может достигать 6 л и более.
В покое человекделает 10-14 дыхательных циклов в 1 минуту, поэтому минутный объем дыхания (МОД) составляет 6-8 л. В состав дыхательного воздуха входит так называемое мертвое (вредное) пространство (120-150 мл), образованное воздухоносными путями (полости рта, носа, глотки, гортани, трахеи и бронхов), не участвующими в газообмене воздухом. Однако заполняющий это пространство воздух играет положительную роль в поддержании оптимальной влажности и температуры альвеолярного газа. Соотношение компонентовдыхательного цикла (длительность фаз вдоха и выдоха, глубина дыхания, динамика давления и скорость потоков в воздухоносных путях) характеризуюттак называемый паттерн дыхания, который зависит от внешних и внутренних влияний на организм.
В процессе газообмена между организмом и атмосферным воздухом большое значение имеет вентиляция легких, обеспечивающая обновление состава альвеолярного газа. Интенсивность вентиляции зависит от глубины и частоты дыхания. Количественным показателем вентиляции легких служит минутный объем дыхания, определяемый как произведение дыхательного объема на число дыханий в минуту.
Легочная вентиляция обеспечивается работой дыхательных мышц. Эта работа связана с преодолением эластического соп- ротивления легких и сопротивления дыхательному потоку воздуха (неэластическое сопротивление). При МОД, равном 6-8 л • мин1, на работу дыхательных мышц расходуется 5-10 мл • мин*102. При физических нагрузках, когда МОД достигает 150- 200 л • мин1, для обеспечения работы дыхательных мышц требуется уже около одного литра Ог Высокая кислородная стоимостьдыха- ния невыгодна для организма, так как 02 не может использоваться для полезной работы.
Из воздуха альвеол 02 переходит в кровь, а в него поступает С02. Поэтому газовый состав их воздуха в процессе вентиляции легких неодинаков (табл. 4).
Выдыхаемый воздух состоит из смеси альвеолярного и воздуха вредного пространства, по составу мало отличающегося от атмосферного. Поэтому выдыхаемый воздух содержит больше 02 и меньше СО, по сравнению с альвеолярным. Назначение легочной вентиляции состоит в поддержании относительного постоянства уровня
Таблица 4 Состав воздуха (в %) при спокойном дыхании
|
парциального давления 02 и С02 в альвеолярном воздухе. При атмосферном давлении 760 мм рт. ст. р02 в нем равно 159 мм рт. ст. и рС02 — 0.2 мм рт. ст., а в альвеолярном воздухе — 102 мм рт. ст. и 40 ммрт. ст., соответственно. Характер легочной вентиляции определяется градиентом парциального давления этих газов в различных отделах дыхательных путей.
10.2. ОБМЕН ГАЗОВ В ЛЕГКИХ И ИХ ПЕРЕНОС КРОВЬЮ
Переход 02 из альвеолярного воздуха в кровь и СО2из крови в альвеолы происходит только путем диффузии. Никакого механизма активного транспорта газов здесь не существует. Движущей силой диффузии являются разности (градиенты) парциальных давлений (напряжений) 02и СО2по обе стороны альвеолярно-капиллярной мембраны или аэрогематического барьера Напряжение газов в различных средах представлено в таблице 5.
Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях водяных паров, слизи и сурфактантов. В ходе диффузии через аэроге- матический барьер молекулы растворенного газа преодолевают большое сопротивление, обусловленное слоем сурфактанта, альвеолярным эпителием, мембранами альвеол и капилляров, эндотелием сосудов, атакже плазмой крови и мембраной эритроцитов.
Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и
Таблица 5
Напряжение 02 и С02 (мм рт. ст.) при спокойном дыхании воздухом
|
большой их газообменной поверхностью (около 100 м2), а также малой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легкиху человека примерно равна 25 мл 02в 1 минврасчетена 1 ммрт.ст. градиента пардиальныхдавлений кислорода. Учитывая, что градиент р02 между притекающей к легким венозной кровью и альвеолярным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохождения крови через легочный капилляр (около 0.8 с) напряжение кислорода в ней успело уравновеситься с альвеолярным р02.
Диффузия С02 из венозной крови в альвеолы даже при сравнительно небольшом градиенте рС02 (около 6 мм рт. ст.) происходит достаточно легко, так как растворимость С02 в жидких средах в 20- 25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рС02 в ней оказывается равным альвеолярному и составляет около 40 мм рт. ст.
Дыхательная функция крови прежде всего обеспечивается доставкой к тканям необходимого им количества 02. Кислород в крови находится в двух агрегатных состояниях: растворенный в плазме (0.3 об.%) и связанный с гемоглобином (около 20 об.%) — о к с и г е м о - глобин,
Отдавший кислород гемоглобин считают восстановленным или дезоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы г е м а (железосодержащего вещества), она может связать четыре молекулы 02. Количество 02, связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл 02. Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, приблизительно равна 1 л.
Каждому значению р02 в крови соответствует определенное процентное насыщение гемоглобина кислородом. Кривую зависимости процентного насыщения гемоглобина кислородом от величины парциального напряжения называют кривой диссоциации окси- гемоглобина (рис. 21). Анализ хода этой кривой сверху вниз показывает, что с уменьшением р02 в крови происходит диссоциация оксигемоглобина, т. е. процентное содержание оксигемоглобина уменьшается, а восстановленного растет.
В различных условиях деятельности может возникать острое снижение насыщенности крови кислородом— гипоксемия. Причины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения р02 в альвеолярном воздухе (произвольная задержка дыхания, вдыхание воздуха с пониженным р02), при физических нагрузках, а также при неравномерной вентиляции различных отделов легких.
Образующийся в тканях С02 диффундирует в тканевые капилляры, откуда переносится венозной кровью в легкие, где переходит в
Рис. 21. Кривая диссонации оксигемоглобина в крови человека в покое А — содержание НЬ02 в артериальной крови. В —то же в венозной крови |
альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (каки 02) находится вдвухсостояниях:растворенный в плазме (около 5% всего количества) и химически связанный с другими веществами (95%). С02 в виде химических соединений имеет три формы: угольная кислота (Н2С03), соли угольной кислоты (NaHC03) ив связи с гемоглобином (НвНС03).
В крови тканевых капилляров одновременно с поступлением С02 внутрь эритроцитов и образованием в них угольной кислоты происходит отдача 02оксигемоглобином. Восстановленный Н в легко связывает водородные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Нв венозной крови способствует связыванию С02, а оксигемоглобин, образующийся в легочных капиллярах, облегчает его отдачу.
В состоянии покоя с дыханием из организма человека удаляется 230-250 мл С02 в 1 минуту. При удалении из крови С02 из нее уходит примерно эквивалентное число ионов водорода. Таким порядком дыхание участвует в регуляции кислотно-щелочного состояния во внутренней среде организма.
Обмен газов между кровью и тканями осуществляется также путем диффузии. Между кровью в капиллярах и межтканевой жидкостью существует градиент напряжения 02, который составляет 30-80 мм рт. ст., а напряжение С02 в интерстициальной жидкости на 20-40 мм рт. ст. выше, чем в крови. Кроме того, на обмен 02 и С02 в тканях влияют площадь обменной поверхности, количество эритроцитов в крови, скорость кровотока, коэффициенты диффузии газов в тех средах, через которые осуществляется их перенос.
Артериальная кровь отдает тканям не весь Ог Разность между об.% 02 в притекающей к тканям артериальной крови (около 20 об.%) и оттекающей от них венозной кровью (примерно 13 об.%) называется артерио- венозной разностью по кислороду (7 об.%). Эта величина служит важной характеристикой дыхательной функции крови, показывая, какое количество 02 доставляют тканям каждые 100 мл крови. Для того, чтобы установить, какая часть приносимого кровью 02 переходит вткани, вычисляют коэффициент утилизации (использования) кислорода. Его определяютпутемделения величины артерио-венозной разности на содержание 02 в артериальной крови и умножения на 100. В покое для всего организма коэффициент утилизации 02 равен примерно 30-40%. Однако в миокарде, сером веществе мозга, печени и корковом слое почек он составляет 40-60%. При тяжелых физических нагрузках коэффициент утилизации кислорода работающими скелетными мышцами и миокардом достигает 80-90%.
В снабжении мышц 02 при тяжелой работе имеет определенное значение внутримышечный пигмент м и о гл о б и н, который свзя- вает дополнительно 1.0-1.5л 02. Связь 02 с миоглобином более прочная, чем с гемоглобином. Оксимиоглобин отдает 02только при выраженной гипоксемии.
10.3. РЕГУЛЯЦИЯ ДЫХАНИЯ
Регуляция внешнего дыхания представляет собой физиологический процесс управления легочной вентиляцией для обеспечения оптимального газового состава внутренней среды организма в постоя11- но меняющихся условиях его жизнедеятельности. Основную роль в регуляции дыхания играют рефлекторные реакции, возникающие в результате возбуждения специфических рецепторов, заложенных в легочной ткани, сосудистых рефлексогенных зонах и скелетных мышцах. Центральный аппарат регуляции дыхания представляют нервные образования спинного, продолговатого мозга и вышележащих сегментов ЦНС.
Гуморальная регуляция дыхания, созданная Д. Холденом и Д. Пристли около 50 лет тому назад, в последние годы не находит экспериментального подтверждения, большинством специалистов считается ошибочной и упоминается сейчас только в историческом плане. Это обусловлено открытием специфических рецепторов (меха но- и хеморецепторов), а также других рефлекторных влияний на дыхательный центр. Поэтому все изменения внешнего дыхания в настоящее время объясняются только рефлекторными механизмами.
Дыхательный ритм и управление деятельностью дыхательных мышц генерируется работой дыхательного центра, представляющего собой совокупность взаимосвязанных нейронов ретикулярной формации продолговатого мозга и вышележащих отделов ЦНС, обеспечивающих тонкое приспособление дыхания кразлич- ным условиям внешней среды. Современные представления р работе дыхательного центра сводятся к тому, что часть дыхательных нейронов, объединенных в так называемую латеральную зону является эфферентной частью дыхательного центра и обеспечивает преимущественно фазу вдоха (инспираторные нейроны). Другая группа нейронов, составляющая медиальную зону, является афферентной частью дыхательного центра и обеспечивает фазу выдоха (экспираторные нейроны). Предназначение этой зоны заключается в контроле за периодичностью дыхательной ритмики, организуемой латеральной зоной.
В регуляции дыхания на основе механизма обратных связей при- нимаютучастие несколько групп механорецепторов легких.
Рецепторы растяжения легких находятся в гладких мышцах трахеи и бронхов. Адекватным раздражителем этих рецепторов является растяжение стенок воздухоносных путей.
Ирритантные рецепторы расположены в эпителиальном слое верхних дыхательных путей и раздражаются при изменении объема легких, атакже при пневмотораксе, коллапсе и действии на слизистую трахеи и бронхов механических или химических раздражителей. При раздражении этих рецепторов у человека возникают кашлевой рефлекс, першение ижжение, учащение дыхания и броноспазм.
Джи-рецепторы расположены в стенках альвеол в местах их контакта с капиллярами, поэтому их еще называют юкстакапил- лярные рецепторы легких. Эти рецепторы формируют частое поверхностное дыхание при патологии легких (воспаление, отек, повреждения легочной ткани), а также раздражаются при действии некоторых биологически активных веществ (никотин, гистамин и др.).
Проприорецепторы дыхательных мышц (межреберные мышцы, мышцы живота) обеспечивают усиление вентиляции легких при повышении сопротивления дыханию.
Поддержание постоянства газового состава внутренней среды организма регулируется с помощью центральных и периферических хеморецепторов.
Центральные хеморецепторы расположены в структурах продолговатого мозга, и они чувствительны к изменению pH межклеточной жидкости мозга. Эти рецепторы стимулируются ионами водорода, концентрация которых зависит от рС02 в крови. П ри снижении pH интерстициальной жидкости мозга (концентрация водородных ионов растет) дыхание становится более глубоким и частым. Напротив, при увеличении pH угнетается активность дыхательного центра и снижается вентиляция легких.
Периферические (артериальные) хеморецепторы расположены в дуге аорты и месте деления общей сонной артерии (каротидный синус). Эти рецепторы вызывают рефлекторное увеличение легочной вентиляции в ответ на снижение рОг в крови (гипок- семия).
Афферентные влияния с работающих мышц осуществляются благодаря раздражению проприорецепторов, что приводит к усилению дыхания рефлекторным путем. Повышение активности дыхател ьного центра в этом случае является результатом распространения возбуждения по различным отделам ЦНС.
Существенное воздействие на регуляцию дыхания оказывают и условнорефлекторные влияния. В частности, эмоциональные нагрузки, предстартовые состояния, гипнотические внушения, влияния индифферентных раздражителей, сочетавшихся ранее с избытком С02, самообучение управлению дыханием подтверждают сказанное. Легочная вентиляция зависит также от особенностей гемодинамики (уровень АД, величина МОК), температуры внешней среды и других факторов.
11. ПИЩЕВАРЕНИЕ
Пищеварением называется процесс физической и химической переработки пищи, в результате которого становится возможным всасывание питательных веществ из пищеварительного тракта, поступление их в кровь и лимфу и усвоение организмом.
11.1. ОБЩАЯ ХАРАКТЕРИСТИКА ПИЩЕВАРИТЕЛЬНЫХ ПРОЦЕССОВ
В пищеварительном аппарате происходят сложные физико-химические превращения пищи, которые осуществляются благодаря моторной, секреторной и всасывающей его функциям. Кроме того, органы пищеварительной системы выпол няют и экскреторную функцию, выводя из организма остатки непереваренной пищи и некоторые продукты обмена веществ.
Физическая обработка пищи состоитвееразмельчении, перемешивании и растворении содержащихся в ней веществ. X и - мические изменения пищи происходят под влиянием гидролитических пищеварительных ферментов, вырабатываемых секреторными клетками пищеварительныхжелез. В результате этих процессов сложные вещества пищи расщепляются на более простые, которые всасываются в кровь или лимфу и участвуют в обмене веществ а организме. В процессе переработки пища теряет свои видовые специфические свойства, превращаясь в простые составные цементы, которые могут быть использованы организмом.
С целью равномерного и более полного переваривания пиши требуется ее перемешивание и передвижение по желудочно-кишечному тракту. Это обеспечивается моторной функцией пищеварительного тракта за счет сокращения гладких мышц стенок желудка и кишечника. Ихдвигательная активность характеризуется перистальтикой, ритмической сегментацией, маятникообразными движениями и тоническим сокращением.
Секреторная функция пищеварительного тракта осуществляется соответствующими клетками, входящими в состав слюнныхжелез полости рта, желез желудка и кишечника, а также поджелудочной железы и печени. Пищеварительный секрет представляет собой раствор электролитов, содержащий ферменты и другие вещества. Выделяют три группы ферментов, принимающих участие в пищеварении;1) протеазы, расщепляющие белки; 2) л ипазы, расщепляющие жиры; 3)карбогидразы, расщепляющие углеводы. Все пищеварительные железы вырабатывают около 6-8 литров секрета в сутки, значительная часть которого подвергается обратному всасыванию в кишечнике.
Пищеварительная система играет важную роль в поддержании гомеостаза благодаря ее экскреторной функции. Пищеварительные железы способны выделять в полость желудочно-кишечного тракта значительное количество азотистых соединений (мочевина, мочевая кислота), воды, солей, различных лекарственных и ядовитых веществ. Состави количество пищеварительных соков могутявляться регулятором кислотно-щелочного состояния и водно-солевого обмена в организме. Существуеттесная взаимосвязь выделительной функции органов пищеварения с функциональным состоянием почек.
Исследование физиологии пищеварения является прежде всего заслугой И. П. Павлова и его учеников. Ими был разработан новый метод изучения желудочной секреции — оперативным путем выкраивалась часть желудка собаки с сохранением вегетативной иннервации . В этот маленький желудочек вживлялась фистула, дающая возможность получать чистый желудочный сок (без примеси пищи) на любом этапе пищеварения. Это позволило подробно характеризовать функции органов пищеварения и раскрыть сложные механизмы их деятельности. В знак признания заслуг И. П. Павлова по физио* логии пищеварения ему 7 октября 1904 г. была присуждена Нобелевская премия. Дальнейшие исследования процессов пищеварения в лаборатории И. П. Павлова раскрыли механизмы деятельности слюнных и поджелудочной желез, печени и желез кишечника. При этом было установлено, что чем выше расположены железы по ходу пищеварительного тракта, тем большее значение имеют нервные механизмы в регуляции их функций. Деятельность желез, находящихся в нижних отделах пищеварительного тракта, регулируется преимущественно гуморальным путем.
11.2. ПИЩЕВАРЕНИЕ В РАЗЛИЧНЫХ ОТДЕЛАХ ЖЕЛУДОЧНО-КИШЕЧНОГО ТРАКТА
Процессы пищеварения вразныхотделахжелудочно-кишечного тракта имеютсвои особенности. Эти отличия касаются физической и химической переработки пищи, моторной, секреторной, всасывающей и выделительной функций органов пищеварения.
11.2.1. ПИЩЕВАРЕНИЕ В ПОЛОСТИ РТА
Переработка принятой пищи начинается в ротовой полости. Здесь происходят ее измельчение, смачивание слюной, анализ вкусовых свойств пищи, начальный гидролиз некоторых пищевых веществ и формирование пищевого комка. Пища в полости рта задерживается в течение 15-18 с. Находясь в ротовой полости, пища раздражает вкусовые, тактильные и температурные рецепторы слизистой оболочки и сосочков языка. Раздражение этих рецепторов вызывает рефлекторные акты секреции слюнных, желудочных и поджелудочной желез, выход желчи в двенадцатиперстную кишку, изменяет моторную активность желудка, а также оказывает важное влияние на осуществление жевания, глотания и вкусовую оценку пищи.
После измельчения и перетирания зубами пища подвергается химической обработке благодаря действию гидролитических ферментов слюны. В полость рта открываются протоки трех групп слюнных желез: слизистых, серозных и смешанных. Многочисленные железы ротовой полости и языка выделяют слизистую, богатую муцином слюну, околоушные железы секретируют жидкую, серозную слюну, богатую ферментами, а подчелюстные и подъязычные — выделяют смешанную слюну. Белковое вещество слюны муцин делает пищевой комок скользким, что облегчает глотание пищи и продвижение ее по пищеводу.
Слюна — первый пищеварительный сок, который содержит гидролитические ферменты, расщепляющие углеводы. Фермент слюны амилаза (птиалин) превращает крахмал в дисахариды, а фермент мальтоза—дисахариды в моносахариды. Поэтому при достаточно длительном пережевывании пищи, содержащей крахмал, она приобретает сладкий вкус. В состав слюны входят также кислая и Щелочная фосфатазы, небольшое количество протеолитических, ли- йолитических ферментов и нуклеаз. Слюна обладает выраженными бактерицидными свойствами, обусловленными наличием в ней фермента лизоцима, растворяющего оболочку бактерий. Общее количество слюны, выделяемое за сутки, может составлять 1-1.5 л.
Сформированный в ротовой полости пищевой комок перемещается к корню языка и далее поступает в глотку. Афферентная им- пульсация при раздражении рецепторов зева и мягкого неба передается по волокнам тройничного, языкоглоточного и верхнего гортанного нерва в центр глотания, находящийся в продолговатом мозге. Отсюда эфферентные импульсы следуют к мышцам гортани и глотки, вызывая ихкоординированные сокращения. В результате последовательного сокращения этих мышц пищевой комок поступаете пищевод и далее перемещается к желудку. Жидкая пища проходит пиШевод за 1 -2 с; твердая — за 8-10 с. С завершением акта глотания начинается желудочное пищеварение.
11.2.2. ПИЩЕВАРЕНИЕ В ЖЕЛУДКЕ
Пищеварительные функции желудка заключаются в депонировании пищи, ее механической и химической обработке и постепенной эвакуации пищевого содержимого через привратник вдвенадца- ' типерстную кишку. Химическая обработка пищи осуществляется желудочным соком, которого у человека образуется 2.0-2.5 л в сутки. Желудочный сок выделяется многочисленными железами тела желудка, которые состоят из главных, обкладочных и добавочных клеток. Главные клетки секретируют пищеварительные ферменты, обкладочные — соляную кислоту и добавочные — слизь.
Основными ферментами желудочного сока являются протеазы и липаза. К протеазам относятся несколько пепсинов, а также желатиназа и химозин. Пепсины выделяются в виде неактивных пепсиногенов. Превращение пепсиногенов и активный пепсин осуществляется под воздействием соляной кислоты. Пепсины расщепляют белки до полипептидов. Дальнейший распад их до аминокислот происходит в кишечнике. Химозин створаживает молоко. Липаза желудочного сока расщепляет только эмульгированные жиры (молоко) на глицерин и жирные кислоты.
Желудочный сок имеет кислую реакцию (pH при переваривании пищи равен 1.5-2.5), что обусловлено содержанием в нем 0.4-0.5% соляной кислоты. У здоровых людей для нейтрализации 100 мл желудочного сока требуется 40-60 мл деци нормального раствора щелочи. Этот показатель называется общей кислотностью желудочного сока. С учетом объема секреции и концентрации водородных ионов определяется также дебдаи-чассвободной соляной кислоты.
Слизь желудочного сока (муцин) представляет собой сложный комплекс глюкопротеидов и других белков в виде коллоидных растворов. Муцин покрывает слизистую желудка по всей поверхности и предохраняет ее как от механических повреждений, так и от самопереваривания, так как он обладает выраженной анти- пептической активностью и способен нейтрализовать соляную кислоту.
Весь процесс желудочной секреции принято делить на три фазы: сложнорефлекторную (мозговую), нейрохимическую (желудочную) и кишечную (дуоденальную).
Секреторная деятельность желудка зависит от состава и количества поступающей пищи. Мясная пищаявляется сильным раздражителем желудочныхжелез, деятельность которых стимулируется вте- чение многих часов. При углеводной пище максимальное отделение желудочного сока происходит в сложнорефлекторной фазе, затем секреция снижается. Тормозящее воздействие нажелудочную секрецию оказывают жир, концентрированные растворы солей, кислот и щелочей. k
Переваривание пищи в желудке обычно происходит втечение 6-8 часов. Длительность этого процесса зависит от состава пищи, ее объема и консистенции, атакже от количества выделившегося желудочного сока. Особенно долго вжелудке задерживается жирная пиша (8- 10 часов и более). Жидкости переходят в кишечник сразу же после их поступления в желудок.
11.2.3. ПИЩЕВАРЕНИЕ В ДВЕНАДЦАТИПЕРСТНОЙ КИШКЕ
Дата добавления: 2015-05-21; просмотров: 654;