ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 12 страница

12.6. РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ

Центральной структурой регуляции обмена веществ и энергии яв­ляется гипоталамус. В гипоталамусе локализованы ядра и центры регуляции голода и насыщения, осморегуляции и энергообмена. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливаютход метаболиз­ма потребностям организма. Эфферентными звеньями системы ре­гуляции обмена являются симпатический и парасимпатический от­делы вегетативной нервной системы и эндокринная система.

Обмен веществ и получение аккумулируемой в АТФ энергии проте­кают внутри клеток. Поэтому важнейшим эффектором, черезкото- рый вегетативная нервная и эндокринная системы воздействуют на обмен веществ и энергии, являются клетки органов и тканей. Регу­ляция обмена веществ заключается в воздействии на скорость биохи­мических реакций, протекающих в клетках.

Воздействие гипоталамуса на обмен белков осуществляется через систему гипоталамус-гипофиз-щитовидная железа. Повышенная продукция уйреотропного гормона передней доли гипофиза приво­дит к увеличению синтеза тироксина и трийодтиронина щитовидной железы, регулирующих белковый обмен. Наобмен белков оказывает прямое влияние соматотропный гормон гипофиза.

Регуляторная роль гипоталамуса в жировом обмене связана с фун­кцией серого бугра. Влияние гипоталамуса на обмен жиров опосре­довано изменением гормональной функции гипофиза, щитовидной

и половых желез. Недостаточность гормональной функции желез ведет к ожирению. Более сложные расстройства жирового обмена наблюдаются при изменении функций поджелудочной железы. В этом случае они оказываются связанными с нарушениями углевод­ного обмена. Истощение запасов гликогена при инсулиновой недо­статочности приводит к компенсаторному усилению процессов глю- конеогенеза. Вследствие этого в крови увеличивается содержание кетоновых тел (бета — оксимасляной, ацетоуксусной кислот и аце­тона) . Н арушение фосфолипидного обмена приводит кжировой ин- фильтрации печени. Лецитины и кефалины при этом легко отдают жирные кислоты, идущие на синтез холестерина, что в последующем обусловливает изменения, связанные с гиперхолестеринемией.

На углеводный обмен гипоталамус воздействует через симпатичес­кую нервную систему. Симпатические влияния усиливают функ­цию мозгового слоя надпочечников, выделяющего адреналин, кото­рый стимулирует мобилизацию гликогена из печени и мышц. Дей­ствие «сахарного» укола в дно IV желудочка продолговатого мозга также связано с усилением симпатических влияний. Главными гумо­ральными факторами регуляции углеводного обмена являются гор­моны коры надпочечников и поджелудочной железы (глюкокорти- коиды, инсулин и глюкагон). Глюкокортикиоды (кортизон, гидро­кортизон) оказывают ингибирующее.(тормозящее) воздействие на глюкокиназную реакцию печени, снижая уровень глюкозы в крови., Инсулин способствует утилизации сахара клетками, а глюкагон уси­ливает мобилизацию гликогена, его расщепление и увеличение со­держания глюкозы в крови.

В гипоталамусе расположены нервные центры, регулирующие вод­но-солевой обмен. Здесь же находятся и осморецепторы, раздражение которых рефлекторно влияет на водно-солевой обмен, обеспечивая постоянство внутренней среды организма. Большую роль в регуля­ции водно-солевого обмена играют антидиуретический гормон гипо­физа и гормоны коры надпочечников (минералкортикоиды). Гормон гипофиза стимулирует обратное всасывание воды в почках и умень­шает этим мочеобразование. Минералкортикоиды (альдостерон) действуют на эпителий почечных канальцев и повышают обратное всасывание в кровь натрия. Регулирующее воздействие на обмен воды и солей оказывают также гормоны щитовидной и паращитовид- ной желез. Первый увеличивает мочеобразование, второй способ­ствует выведению из организма солей кальция и фосфора.

Энергетический обмен в организме регулируется нервной и эндок­ринной системами. Уровень энергообмена даже в состоянииотноси- тельного покоя может изменяться под влияниемусловнорефлектор- ныхраздражителей. Например, у спортсменов расход энергии повы­шается в предстартовом состоянии. Существенное влияние науро-

вень энергообмена оказывают гормоны гипофиза и щитовидной желе­зы. Flptf усилении функции этих желез величина его повышается, при ослаблении—понижается.

13. ВЫДЕЛЕНИЕ

Основной физиологической функцией выделительных процессов является освобождение организма от конечных продуктов обмена ве­ществ, избытка воды, органических и неорганических соединений, т. е. сохранение постоянства внутренней среды организма.

13.1. ОБЩАЯ ХАРАКТЕРИСТИКА ВЫДЕЛИТЕЛЬНЫХ ПРОЦЕССОВ

Выделительные функции у человека осуществляются многими органами и системами организма: почками, желудочно-кишечным трактом, легкими, потовыми, сальными железами и др. Через почки у человека удаляются избыток воды, солей и продукты обмена ве­ществ. Желудочно-кишечный тракт выводит из организма остатки пищевых веществ и пищеварительных соков, желчь, соли тяжелых металлов и некоторые лекарственные вещества. Через легкие выде­ляются углекислый газ, пары воды и летучие вещества (продукты распада алкоголя, лекарственные вещества). Потовые железы удаля­ют воду, соли, мочевину, креатинин и молочную кислоту; сальные железы — кожное сало, образующее защитный слой на поверхности тела. Ведущая роль в выделительных процессах и сохранении гомео­стаза принадлежит почкам и потовым железам.

13.2. ПОЧКИ И ИХ ФУНКЦИИ

Почки выполняют целый ряд выделительных и гомеостатичес­ких функций в организме человека. К ним относятся: 1) поддержание нормального содержания в организме воды, солей и некоторых ве­ществ (глюкоза, аминокислоты); 2) регуляция pH крови, осмотичес­кого давления, ионного состава и кислотно-щелочного состояния; 3) экскреция из организма продуктов белкового обмена и чужеродных веществ; 4) регуляция кровяного давления, эритропоэза и свертыва­ния крови; 5) секреция ферментов и биологически активных ве­ществ (ренин, брадикинин, простагландины и др.). Таким образом, почка является органом, обеспечивающим два главных процесса — мочеобразовательный и гомеостатический.

Основныефункции почек осуществляются в нефронах. В каждой почке человека имеется около одного миллиона нефронов,

Рис. 22. Схема строения нефрона А — нефрон; 1 — сосудистый (мальпигиев) клубочек, 2 — извитой каналец первого порядка, 3 — собирательная трубка Б — тельце шушянского-Боумена; 1 — приносящий сосуд, 2—выносящий сосуд, 3 — капиллярная сеть клубочка, 4 — полость капсулы, 5 — начало извитого канальца, 6 — капсула Шумлянского~Боумена

 

являющихся ее функциональными единицами и включающими маль­пигиево (почечное) тельце и мочевые канальцы.

Мальпигиево тельце состоит из капсулы Шумлянского- Боумена, внутри которой находится сосудистый клубочек (рис. 22). В кбрковом слое расположено около 75% капсул и извитых каналь­цев. В пограничной зоне (между корковым и мозговым слоем) — юкстамедуллярная зона—располагаются остальные капсулы; изви­тые канальцы этого комплекса находятся у границы с почечной ло­ханкой. Юксамедуллярные нефроны отличаются от корковых неко­торыми особенностями в строении и кровоснабжении (одинаковый диаметр приносящих и выносящих артериол). Считают также, что юкстамедуллярный комплекс выполняетэндокринную роль (обра­зуется ренин), стимулирует секрецию горомнаальдостерона надпо­чечниками и регулирует водно-солевой баланс.

•Капсула Шумлянског о-Б о у м е н а имеет форму двустенной чаши и образована вдавлением слепого расширенного конца мочевого канальца в ее просвет. Внутренняя стенка капсулы, состоящая из однослойного плоского эпителия, тесно соприкасаётся со стенками капилляров сосудистого клубочка, образуя базальную

фильтрующую мембрану. Между ней и наружной стенкой капсулы находится щелевидная полость, в которую поступает плазма крови, фильтрующаяся через базальную мембрану из капилляров клубочка.

Клубочек состоит из приносящей артерии, сложной сети артериальных капилляров и выносящей артерии. Диаметр выносящей артериолы меньше, чем приносящей, что способствует поддержанию в капиллярах клубочков относительно высокого кровяного давления.

Мочевые канальцы начинаются от щелевидной полости капсулы, которая непосредственно переходит в проксимальный (ка­налец первого порядка) извитой каналец. В некотором отдалении от капсулы проксимальный каналец выпрямляется и образует петлю Генле, переходящую в дистальный (каналец второго порядка) изви­той каналец, открывающийся в собирательную трубку. Собиратель­ные трубки проходят через мозговой слой почки и открываются на верхушках сосочков. Собирание конечной мочи происходит в почеч­ных лоханках, куда открываются почечные чашечки.

В обычных условиях через обе почки, составляющие лишь 0.43% массы тела человека, проходит около 25% объема крови, выбрасыва­емой сердцем. Кровотоке коре почки достигает 4-5 мл • мин-1 на 1 г ткани — это наиболее высокий уровень органного кровотока. Осо­бенность почечного кровотока заключается также в том, что несмот­ря на существенные колебания артериального давления, кровоток в почках остается постоянным. Это обусловлено специальной систе­мой саморегуляции кровообращения в них.

13.3. ПРОЦЕСС М0ЧЕ0БРА30ВАНИЯ И ЕГО РЕГУЛЯЦИЯ

Согласно современным представлениям, образование конечной мочи является результатом трех процессов: фильтрации, реабсорб­ции и секреции.

Процесс фильтрации воды и низкомолекулярных композитов плазмы через стенки капилляров клубочка происходит только в том случае, если давление крови в капиллярах (около 70 мм рт. ст.) превышает сумму онкотического давления белков плазмы (около 30 мм рт. ст.) и давления жидкости (около 20 мм рт. ст.) в капсуле клубочка. Таким образом, эффективное фильтрационное давление, определяющее скоростьклубочковой фильтрации, состав­ляет около 20 мм рт ст.

Фильтрат, поступивший в капсулу Шумлянского-Боумена, со­ставляет первичную мочу, которая по своему содержанию отличается от состава тазмы крови только отсутствием белков. В ь сутки через почки человека протекает 1500-1800 л крови, и из каж­дых 10 л крови, проходящей через капилляры клубочков, образуется около 1 л фильтрата, что составляет в течение суток 150-180 л первич-

ной мочи. Такая интенсивная фильтрация возможна только в усло­виях обильного кровоснабжения почеки при особом строении филь­трационной поверхности капилляров клубочка, в которых поддер­живается высокое давление крови.

Канальцевая реабсорбция или обратное всасы­вание происходит в извитых канальцах и петле Генле, куда посту­пает образовавшаяся первичная моча. Из 150-180 л первичной мочи реабсорбируется около 148-178л воды. В почечных канальцах оста­ется небольшое количество жидкости— вторичная (конечная) м о ч а, с уточный объем которой равен около 1.5 л.Через собиратель­ные трубки, почечные лоханки и мочеточники она поступает в моче­вой пузырь. Такое значительное обратное всасывание объясняется тем, что общая суммарная площадь канальцев почек человека состав­ляет 40-50 м2, а длина всех извитых канальцев достигает 80-100 км. Длина канальцев одного нефрона не превышает 40-50 мм. Реабсорб­ции подвергаются кроме воды многие необходимые для организма органические (глюкоза, аминокислоты, витамины) и неорганичес­кие (ионы К+, Na+, Са2+, фосфаты) вещества.

Канальцевая секреция осуществляется клетками канальцев, которые также способны выводить из организма некото­рые вещества.Ташс вещества слабо фильтруются или совсем не про­ходят из плазмы крови в первичную мочу (некоторые коллоиды, органические кислоты). Механизм канальцевой секреции состоитв том, что клетки эпителия нефрона захватывают названные вещества из крови и межклеточной жидкости и переносят их в просвет каналь­ца. Другой вариант канальцевой секреции заключается в выделении в просвет канальцев новых органических веществ, синтезированных в клетках нефрона (мочевина, мочевая кислота, уробилин и др.). Скорость каждого из этих процессов регулируется в зависимости от состояния организма и характера воздействия на него.

Регуляция мочеобразования осуществляется неирогуморальнымпутем. Высшим подкорковым центром регуля­ции мочеобразования является гипоталамус. Импульсы от рецепто­ров пачек по симпатическим нервам поступают в гипоталамус, где вырабатывается антидиуретический гормон (АДГ) или вазопрессин, усиливающий реабсорбцию воды из первичной мочи и являющийся основным компонентом гуморальной регуляции. Этот гормон по­ступает в гипофиз, там накапливается и затем выделяется в кровь. Повышение секреции АДГ сопровождается увеличением проницае­мости извитых канальцев и собирательных трубок для воды. Усилен­ная реабсорбция воды при недостаточном ее поступлении в организм приводит к снижению диуреза; моча при этом характеризуется высо­кой концентрацией находящихся в ней веществ. При избытке воды в организме осмотическое давление плазмы падает. Через осмо- и

ионорецепторы гипоталамуса и почек происходит рефлекторное снижение продукции АДГ и его поступления в кровь. В этом случае организм избавляется от избытка воды путем выделения большого количества мочи низкой концентрации. Существенное значение в гуморальной регуляции мочеобразования принадлежит гормону коры надпочечников альдостерону(из группы минералокортикои- дов), который увеличивает реабсорбцию ионов Na+ и секрецию ионов К+, уменьшая диурез.

Нервная регуляция мочеобразования выражена слабее, чем гумо­ральная, и осуществляется как условнорефлекторным, так и безус­ловнорефлекторным путем. В основном она происходит благодаря рефлекторным изменениям просвета почечных сосудов под влия­нием различных воздействий на организм. Это ведет к сдвигам по­чечного кровотока и, следовательно, процесса мочеобразования. Условнорефлекторное повышение диуреза на индифферентный раздражитель, подкрепленное повышенным потребление воды, свидетельствует об участии коры больших полушарий в регуляции мочеобразования. Следует иметь в виду, что почки обладают высо­кой способностью к саморегуляции. Выключение высших корко­вых и подкорковых центров регуляции не приводит к прекраще­нию мочеобразования.

13.4. ГОМЕОСТАТИЧЕСКАЯ ФУНКЦИЯ ПОЧЕК

Подержание почками повргоянства объемам состава внутренней средыи прежде всего крови осуществляется специальной системой рефлекторной регуляции, включающей специфические рецепторы, афферентные пути и нервные центры, где происходит переработка информации. Команды к почкам поступаютпо эфферентным не­рвам или гуморальным путем. П риспособление работы почек к изме­няющимся условиям определяется преимущественным влиянием на клубочковый и канальцевый аппарат различных гормонов (АДГ, альдостерон, паратгормон, инсулин, гастрин,тирокальциотонин).

Почки являются основным органом осмо— и волюморегуляции (ре­гуляции объема). Они обеспечивают выделение избытка воды из организма в виде гипотонической мочи при увеличенном содержа­нии воды (гипергидратации) или задерживают воду и выводят мочу, гипертоническую по отношению к плазме крови, при обезвожива­нии организма (дегидратации). Эти особенности мочевыведения оп­ределяются активностью центральных и периферических осмо- и натриорецепторов и уровнем выделения АДГ из гипоталамуса.

В почках осуществляется синтез ряда биологически активных ве­ществ (ренин, брадикини, урокиназа, простагландины и др.), кото­рые участвуют в регуляции и поддержании постоянства внутренней среды организма, т. е. почки являются типичным органом внутрен­ней секреции.

13.5. МОЧЕВЫВЕДЕНИЕ И МОЧЕИСПУСКАНИЕ

Образующаяся в почечных канальцах конечная моча по собира­тельным трубкам поступает в почечные лоханки, мочеточники и мо­чевой пузырь. Объем мочи в нем постепенно увеличивается, его стенки растягиваются. На начальном этапе заполнения пузыря на­пряжение его стенок не изменяется, и давление внутри его не растет. Когда объем мочи в пузыре достигает 250-300 мл, напряжение глад­комышечных волокон его стенок резко нарастает, давление жидко­сти в его полости достигает 15-16 см водн. ст. и наступает рефлектор­ный акт мочеиспускания.

Ведущим фактором, вызывающим раздражение механорецепто­ров мочевого пузыря, является именно растяжение его стенок и в меньшей степени — увеличение давления. Если поместить пузырь в капсулу, препятствующую его растяжению, то повышение давления внутри пузыря не вызывает соответствующих рефлекторных реак­ций. Возбуждение, возникшее при раздражении механорецепторов мочевого пузыря, поступает по афферентным нервам в крестцовый отдел спинного мозга, где находится рефлекторный центр мочеис­пускания, Эфферентная иннервация мочевого пузыря осуществля­ется симпатическими и парасимпатическими волокнами. Импуль­сы, передающиеся по симпатическим волокнам, расслабляют мыш­цы пузыря и повышают тонус его жома, что способствует заполне­нию пузыря мочой и ее удержанию в нем. Противоположный эффект вызывают импульсы, поступающие по парасимпатическим волокнам, что приводит к более частому мочеиспусканию.

Спинальный центр мочеиспускания находится под контролем вышележащих отделов мозга: тормозящие влияния исходят из коры головного мозга и среднего мозга, возбуждающие—из гипоталамуса и варолиева моста. Первые позывы к мочеиспусканию появляются у взрослого человека, когда объем мочи в пузыре достигает 150 мл. Усиленный поток импульсов наступает при увеличении мочи в пу­зыре до 250-300 мл. При этом имеет место произвольное мочеиспус-> кание. При дальнейшем повышении объема содержимого пузыря акт мочеиспускания становится непроизвольным.

13.6. ПОТООТДЕЛЕНИЕ

Потоотделение выполняет ряд важных функций в организ­ме. Выделение пота освобождает организм от конечных продуктов обмена веществ; путем выведения воды и солей поддерживается по­стоянство осмотического давления, а также нормализуется темпе­ратура тела вследствие теплоотдачи при испарении пота с поверхно­сти кожи.

Пот содержит 98-99% воды, минеральные соли (хлористый на­трий и хлористый калий, сульфаты, фосфаты) и органические веще­ства (мочевина, мочевая кислота, креатинин, гиппуровая кислота). Плотность пота составляет 1.010-1.012. В среднем за сутки вусловиях относительного физического и эмоционального покоя, при комфорт­ной температуре окружающей среды выделяется 500-600 мл пота.

Различают термическое и эмоциональное пото­отделение. Термическое потоотделение происходит на всей поверхности тела, эмоциональное — на ладонях, подошвенной сто­роне стоп, в подмышечных впадинах, на лице и реже на других учасч ткахтела.

Интенсивность и скорость термического потоотделения нахо­дится в прямой зависимости от уровня повышения температуры ок­ружающей среды. При температуре воздуха около 60° С у человека в течение часа образуется 2.5 л пота. В горячих цехах за рабочую смену выделение пота может составлять 10-12 л. Испарение пота в таких условиях имеет исключительное значение для поддержания темпе­ратурного гомеостаза, так как на испарение 1 г воды с поверхности тела человека расходуется 2.43 кДж (0.58 ккал).

Эмоциональное (холодйое) потоотделение возн и кает при различ­ных психических реакциях (страх, радость, гнев), умственном на­пряжении, т. е. факторов, не оказывающих существенного влияния на терморегуляцию. Эмоциональное потоотделение в отличие оттер- мического имеет очень короткий латентный период, быстро достига­ет максимума, соответствующего силе возбуждения, и так же быстро прекращается с окончанием раздражения.

Потоотделение, вызываемое физической работой, представляет со­четание обоиувидов—термического (вследствие повышения тепо- лопродукции при мышечной деятельности) и эмоционального. Сле­довательно, интенсивность потоотделения при спортивной деятель­ности зависит как от ее характера, так и от эмоционального фона.

Образование пота является аюжным секреторным процессом, находящимся под контролем нейрогуморальной регуляции. Иннер­вация потовых желез осуществляется симпатическими нервами. От­личительной особенностью волокон симпатических нервов является то, что они выделяют в качестве медиатора не адреналин, а ацетилхо­лин, т. е. действуют по механизму парасимпатических, холинэрги* ческих структур. Механизм эмоционального потоотделения отлича­ется от теплового тем, что холодный пот выделяется под влиянием тех симпатических нервов, в синапсах которых выделяется адрена­лин. Парасимпатическая иннервация на деятельность потовыхжслез не оказывает влияния. Центры, регулирующие потообразование, расположены в спинном мозге и в гипоталамусе. Условнорефлектор­но или при нагревании терморецепторов кожи импульсы поступают в соответствующие центры, и оттуда по симпатическим нервам воз­буждение передается к потовым железам.

14. ТЕПЛОВОЙ ОБМЕН

Способность организма человека сохранять постоянную темпера­туру обусловлена сложными биологическими и физико-химически- мипроцессами терморегуляции. В отличие от холоднокровных (пойкилотермных) животных, температура тела теплокровных (го- мойотермных) животных при колебаниях температуры внешней среды поддерживается на определенном уровне, наиболее выгодном для жизнедеятельности организма. Поддержание тепловогб баланса осуществляется благодаря строгой соразмерности в образовании теп­ла и в ее отдаче.

Величина теплообразования зависит от интенсивности химических реакций, характеризующих уровень обмена веществ. Т еплоотдача регулируется преимущественно физическими процессами (теплоизлучение, теплопроведение, испарение).

14.1. ТЕМПЕРАТУРА ТЕЛА ЧЕЛОВЕКА И ИЗОТЕРМИЯ

Температура тела человека и высших животных поддерживается на относительно постоянном уровне, несмотря на колебания темпе­ратуры внешней среды. Это постоянство температуры тела носит на­звание изотермии. Изотермия в процессе онтогенеза развивается постепенно. У новорожденныхдетей онадалеконе совершенна и ус­тойчивый характер приобретает с возрастом. Перераспределение теп­ла между тканаяи осуществляется кровью. Кровь, обладая высокой теплоемкостью, переносит тепло от тканей с высоким уровнем теплообразования Ктканям, где тепло образуется в небольших коли­чествах. В результате выравнивается уровень температуры в различ­ных частях тела.

Температура поверхностных тканей («оболочки»), как правило, ниже температуры глубоких тканей («ядра»). Температура поверх­ности тела неравномерна и зависит от интенсивности переноса к ней тепла кровью из глубоких частей тела, а также от охлаждающего или согревающего действия температуры внешней среды (рис. 23). Так, температура кожи на покрытых одеждой участках колеблется от 29° до 34'; колебания температуры кожи на открытых частях тела в существенной мере зависят оттемпературы внешней среды.

Температура глубоких тканей более равномерна и составляет 37-37.5’. Темпе­ратура печени, мозга, почек несколько выше, чем других внутренних органов.

Рис. 23. Температурные ядро (серым цветом) иоблочка

О температуре тела человека судят обычно на основании ее измерения в под­мышечной впадине. Здесьтемпературау здорового человека равна 36.5-37°. Темпе­ратура тела ниже 24° и выше 43° не совмес­тима сжизнью человека ^ Изотермия име­ет большое значение для метаболических процессов. Ферменты и гормоны облада­ют наибольшей активностью при темпе­ратуре 35-40°. Температура тела человека не остается постоянной, аколеблется в те­чение суток в пределах 0.5-0.8’. Макси­мальная температура тела наблюдается в 16-18 часов, а минимальная — в 3-4 часа.

Постоянство температуры тела у человека может сохраняться лишь при условии равенства теплообразования и теплопотери всего организма. Это достигается посредством физиологическихл/сшмиз- мов терморегуляции, которую принято разделять на химическую и физическую. Способность человека противостоять воздействию тепла и холода, сохраняя стабильную температуру тела, имеет извес­тные пределы. При чрезмерно низкой или очень высокой температу­ре среды защитные терморегуляционные механизмы оказываются недостаточными, и температура тела начинает резко падать или по­вышаться. В первом случае развивается состояние гипотермии, во втором — гипотермии.

14.2. МЕХАНИЗМЫ ТЕПЛООБРАЗОВАНИЯ

Образование тепла в организме происходит главным образом в результате химических реакций обмена веществ. При окислении пи­щевых компонентов и других реакций тканевого метаболизма обра­зуется тепло. Величина теплообразования находится в тесной связи с уровнем метаболической активности организма. Поэтому теплопро­дукцию называюттакже химической терморегуляцией.

Химическая терморегуляция имеет особо важное значение для поддержания постоянства температуры тела в условиях охлаждения. При понижении температуры окружающей среды происходит уве­личение интенсивности обмена веществи, следовательно, теплооб­разования. У человека усиление теплообразования отмечается в том случае, когда температура окружающей среды становится ниже оп­
тимальной температуры или зоны комфорта. В обычной легкой одежде эта зона находится в пределах 18-20°, а для обнаженного чело­века—28°С.

Суммарное теплообразование в организме происходит в ходе хи­мических реакций обмена веществ (окисление, гликолиз), что со- ставляеттакназываемое первичное тепло и при расходовании энергии макроэргических соединений (АТФ) на выполнение работы (вторичное тепло). В виде первичного тепла в тканях рассеивается 60-70% энергии. Остальные 30-40% после расщепле­ния АТФ обеспечивают работу мышц, различные процессы синте­за, секреции и др. Но и при этом та или иная часть энергии перехо­дит затем в тепло. Таким образом, и вторичное тепло образуется вследствие экзотермических химических реакций, а при сокраще­нии мышечных волокон — в результате их трения. В конечном итоге переходит в тепло или вся энергия, или подавляющая ее часть.

Наиболее интенсивное теплообразование в организме происходит в мышцах при их сокращении Относительно небольшая двигательная активность ведет кувеличению теплообразования в 2 раза, а тяжелая работа — в 4-5 раз и более. Однако в этих условиях существенно воз­растают потери тепла с поверхности тела.

При продолжительном охлаждении организма возникают непро­извольные периодические сокращения скелетной мускулатуры (холо- довая дрожь). При этом почти вся метаболическая энергия в мышце освобождается в виде тепла. Активация в условиях холода симпати­ческой нервной системы стимулирует липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Наконец, повышение теплопродукции связано сусилением функций надпочеч­ников и щитовидной железы. Гормоны этих желез, усиливая обмен веществ, вызывает повышенное теплообразование. Следует также иметь в виду, что все физиологические механизмы, которые регули­руют окислительные процессы, влияют в то же время и на уровень теплообразования.

14.3. МЕХАНИЗМЫ ТЕПЛООТДАЧИ

Отдача теша организмом (физическая терморегуляция) осуще­ствляется путем излучения, проведения и испарения. Излуче­нием теряется примерно 50-55% тепла в окружающую среду путем лучеиспускания за счет инфракрасной части спектра. Количество тепла, рассеиваемого организмом в окружающую среду с излучени­ем, пропорционально площади поверхности частейтела, которые со­прикасаются с воздухом, и разности средних значений температур кожи и окружающей среды. Отдача тепла излучением прекращается, если выравнивается температура поверхности кожи и окружающей среды.

Теплопроведение может происходить путем кондукции и конвекции. Кондукцией тепло теряется при непосредственном контакте участков тела человека с другими физическими средами. При этом количество теряемого тепла пропорционально разнице средних температур контактирующих поверхностей и времени теп­лового контакта. Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха. Конвекцией тепло рассеивается при обтекании поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. Движение воздушных потоков (ветер, вентиляция) увеличи­вают количество отдаваемого тепла. Путем теплопроведения орга­низм теряет 15-20% тепла, при этом конвекция представляет более мощный механизм теплоотдачи, чем кондукция.

Теплоотдача путем испарения — это способ рассеивания организмом тепла (около 30%) в окружающую среду за счет его зат-> раты на испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды 20° испарение влаги у человека составляет 600-800 г в сутки. При переходе в воздух 1 г воды организм теряет 0.58 ккал тепла. Если внешняя температура превышает среднее значение температуры кожи, то организм не отда­ет во внешнюю среду тепло излучением и проведением, а наоборот, поглощает тепло извне. Испарение жидкости с поверхности тела происходит при влажности воздуха менее 100%.

14.4. РЕГУЛЯЦИЯ ТЕПЛООБМЕНА

Регуляция теплообмена обеспечивает баланс между количеством продуцируемого в единицу времени тепла и количеством тепла, рас­сеиваемого организмом за то же время в окружающую среду. В ре­зультате температура тела человека поддерживается на относительно постоянном уровне.

Восприятие и анализ температуры окружающей среды осуществ­ляется с помощью терморецепторов. Терморецепторы имеются в коже, мышцах, сосудах, во внутренних органах, дыхательных пу­тях, спинном и среднем мозге. Одни из них реагируют на холод (холо- довыерецепторы), которых на поверхности тела человека насчитыва­ется около 250000, другие — на тепло {тепловыерецепторы), их при­мерно 30000. Разветвленная сеть терморецепторов обеспечивает под­робную информацию о температурных сдвигах во внешней и внутренней среде организма, которая поступает в высшие центры теплообмена.








Дата добавления: 2015-05-21; просмотров: 1183;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.