ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 5 страница

Существенное значение имеют механические условия работы мышцы —точка приложения ее силы и точка прило­жения сопротивления (поднимаемого груза). Например, при сгиба­нии в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга су­хожилий — 500 кг.

Между силой и скоростью сокращения мышцы существует опре­деленное соотношение, имеющее вид гиперболы (соотношение сила — скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, темменьше скорость ее сокращения, и наоборот, с нараста­нием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мы­шечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. отчастоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и, соответствен­но, потребляется больше энергии АТФ. Во время сокращения мы­шечных волокон в 1 с происходит примерно от 5 до 50 циклов при­крепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Л ишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (треморутомления).

5.5. РЕЖИМЫ РАБОТЫ МЫШЦЫ

Механическая работа (А), совершаемая мышцей, измеряется произведением поднимаемого веса (Р) на расстояние (h): А= Р • h кгм. При регистрации работы изолированной мышцы лягушки вид­но, что чем больше величина груза, тем меньше высота, на которую

его поднимает мышца. Различают 3режима работы мышцы: изото­нический, изометрический и ауксотонический..

Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напря­жение в ней при этом не изменяется. Это происходит при раздраже­нии изолированной мышцы лягушки, закрепленной одним концом на штативе. Так как при этих условиях Р=0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в орга­низме человека только однамышца — мышцаязыка. (В современной литературе также встречается термин изотонический режим по отно­шению к такому сокращению мышцы с нагрузкой, при котором по мере изменения длины мышцы напряжение ее сохраняется неизмен­ным, но вэтом случае; механическая работа мышцы не равна нулю, т. е. она совершает внешнюю работу).

Изометрический режим (режим постоянной длины' мышцы) характеризуется напряжением мышцы в условиях, когда она закреплена с обоих концов или когда мышца не может поднять слишком большой груз. При этом h = 0 и, соответственно, механи­ческая работа тоже равна нулю (А=0). Этот режим наблюдается при сохранении заданной позы и при выполнении статической работы. В этом случае в мышечном волокне все равно происходят процессы возникновения и разрушения мостиков между актином и миозином, т. е. тратится энергия на эти процессы, но отсутствует механическая реакция перемещения нитей актина вдоль миозина. Физиологичес­кая характеристика такой работы заключается в оценке величины нагрузки и длительности работы.

Ауксотонический режим (смешанныйрежим)характе­ризуется изменением длины и тонуса мышцы, при сокращени и кото­рой происходит перемещение груза. В этом случае совершается меха­ническая работа мышцы (А = Р • h). Такой режим проявляется при выполнении динамической работы мышц даже при отсутствии внешнего груза, так как мышцы преодолевают силу тяжести, дей­ствующую на тело человека. Различают 2 разновидности этого ре­жима работы мышц: преодолевающий (концентрический) и уступа­ющий (эксцентрический) режим.

Изучение работы мышцы с различными нагрузками и в разном темпе позволило вывести закон средних нагрузок и среднего темпа движений: максимальную механическую работу мышца совершает при средних нагрузках и среднем темпе движений. При высоких скоростях сокращения мышцы часть ее энергии тратится на преодоление сопротивления (растущего внут­реннего трения и вязкости мышцы), а при низких скоростях — на поддержание изометрического напряжения, которое также присут-

ствует в этом случае длЛ закрепления достигнутой длины мышцы в каждый данный момент времени.

Работу, производимую мышцами человека, изучают, используя различные методики ее регистрации — эргографию, велоэргомет- риюидр. В эргографии (греч.эргон —работа,графо—писать) регистрируется амплитуда подъема различных грузов, подвешенных через блок. Вычисляя по эргограмме величину работы как произве­дение груза на амплитуду его подъема (А = Р • h), И. М. Сеченов описал в 1905 г. явление активного отдыха. Оказалось, что пассивный отдых правой руки после ее утомления дает меньшее уве­личение ее работоспособности, чем послеработы (во время ее отдыха) левой руки.

5.6. ЭНЕРГЕТИКА МЫШЕЧНОГО СОКРАЩЕНИЯ

При работе мышц химическая энергия превращается в механичес­кую, т. е. мышца является химическим двигателем* а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. РасщеплениеАТФсотсоединениемодноймолеку- лы фосфата и образованием аденозиндифосфата (АДФ) сопровожда­ется выделением 10 ккал энергии на 1 моль:АТФ=АДФ + Ф + Эн.. Однако запасы АТФ в мышцах невелики (около 5 ммоль • л'1). Их хватает л ишь на 1 -2 с работы. Количество АТФ в мышцах не может изменяться, так как при отсутствии АТФ в мышцах развивается кон­трактура (не работает кальциевый насос и мышцы не в состоянии расслабляться), а при избытке—теряется эластичность.

Для продолжения работы требуется постоянное восполнение за­пасов АТФ. Восстановление АТФ происходите анаэробных услови­ях — за счет распада креатинфосфата (КрФ) и глюкозы (реакции гликолиза) — и в аэробных условиях — за счет реакций окисления жиров и углеводов. Энергосистемы, используемые в качестве ис­точников энергии, обозначают как фосфагенная энергетическая си­стема или система АТФ-КрФ, гл и колитическая (или лактацидная) система и окислительная (или кислородная) система.

Быстрое восстановление АТФ происходит в тысячные доли секунды за счет распада КрФ: АДФ + КрФ = АТФ + Кр. Наи­большей эффективности этот путь энергообразования достигает к 5- 6-й секунде работы, но затем запасы КрФ исчерпываются, так каких также немного (около 30 ммоль • л1).

Медленное восстановление АТФ ванаэробныхусловиях обеспечивается энергией расщепления глюкозы (выделяемой из глико­гена) —реакцией гликолиза с образованием в конечном итоге молоч­ной кислоты (лактата) и восстановлением 3 молекул АТФ. Эта реак­ция достигает наибольшей мощности к концу 1-й минуты работы.

Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 -2 мин (напри­мер, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее напряженной работы (спурты и финишные ускорения при бегена длинные дистанции) и при недо­статке кислорода во время выполнения статической работы. Ограни­чение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т. е. при аэробнойработе длительностью более 2-3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечно-сосудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина по­ступления в организм кислорода за 1 мин— максимальное по­требление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренирован­ных лиц в 1 мин поступает к работающим мышцам около 2.5-3 л О, а у высококвалифицированных спортсменов—лыжников, пловцов, бегунов-стайеров и др. достигает 5-6 л и даже 7 л в 1 мин.

При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, так какдля их окисления требуется гораздо меньше кислорода, чем при окислении жиров.. При использовании одной молекулы глюкозы (С6Н1206), полученной из гликогена, образуется 38 молекул АТФ, т. е. аэробный путь энергообра­зования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молоч ная кислота в этих рсак- цияхне накапливается, а промежуточный продукт—пировиноградная кислота сразу окисляется до конечных продуктов — СО, и Н20.

В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50% М П К) и при очень длител ьной работе на выносливость (требующей около 70-80% МПК). Среди всех ис­точников энергии жиры обладают наибольшей энергетической емко­стью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ —около 10.5 ккал, 1 моля глюкозы при анаэ­робном расщеплении—около 50 ккал,апри окислении 1 моля глю­козы — около 700 ккал, при окислении 1 моля жиров — 2400 ккал (КоцЯ. М., 1982). Однако использование жиров при работе высо­кой мощности лимитируется трудностью доставки кислорода рабо­тающим тканям.

Работа мышц сопровождается выделением тепла. Теплообразова­ние происходит в момент сокращения мышц—начальное теплообра­зование (оно составляет всего одну тысячную всех энерготрат) и в пе­риод восстановления—запаздывающее теплообразование.

В обычных условиях при работе мышц тепловые потери состав­ляют около 80% всех энерготрат. Для оценки эффективности меха­нической работы мышцы используют вычисление коэффициента полезного действия (КПД).ВеличинаКЛДпоказываег,какая часть затрачиваемой энергии используется на выполнение механичес­кой работы мышцы. Ее вычисляют по формуле:

КПД=[А:(Е-е)]-100%,

где: А — энергия, затраченная на полезную работу; Е — общий расход энергии; е — расход энергии в состоянии покоя за время, равное длитель­ности работы.

У нетренированного человека КПД примерно 20%, у спортсмена— 30-35%. При ходьбе наибольший КПД отмечается при скорости 3.6- 4.8 км • час*1, при педалировании на велоэргометре — при длительно­сти цикла около 1 с. С увеличением мощности работы и включением «ненужных» мышц КПД уменьшается. При статической работе, по­скольку А=0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.

6. ПРОИЗВОЛЬНЫЕ ДВИЖЕНИЯ

Двигательная деятельность человека является основной формой его поведения во внешней среде. При этом следует указать, что не только физическая работа, но и разнообразные виды умственного труда в конечном итоге проявляются двигательной активностью. И. М. Сеченов (1863) по этому поводу писал, что «... все бесконеч­ное разнообразие внешних проявлений мозговой деятельности сво­дится окончательно к одному лишь явлению — мышечному движе­нию».

6.1. ОСНОВНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ДВИЖЕНИЙ

Выполнение двигательных актов осуществляется обширным комплексом нейронов, расположенных в различных отделах ЦНС. Такая функциональная система управления движениями является многоэтажной и многоуровневой.


6.1.1. ОБЩАЯ СХЕМА УПРАВЛЕНИЯ ДВИЖЕНИЯМИ

Решающим фактором поведения является полезный результат. Для его достижения в нервной системе формируется группа взаимо­связанных нейронов — функциональная система (П. К. Анохин, 1975). Деятельность ее включает следующие процес­сы: 1) обработка всех сигналов, поступающих из внешней и внутрен­ней среды организма — так называемый афферентный синтез;

2) принятие решения о цели и задачахдействия; 3) создание представ­ления об ожидаемом результате и формирование конкретной про­граммы движений; 4) анализ полученного результата и внесение в программу поправок — сенсорных коррекций.

В процессах афферентного синтеза участвуют глубокие внутрен­ние процессы—побуждение к действию (мотивация) иегозамысел, извлекаются из памяти моторные следы (навыки) и выученные тактические комбинации. У человека на их основе создается опреде­ленный п л а н и конкретная программа движения. Эти процессы отражаются в изменениях электрической активности моз­га — «волна ожидания», изменения огибающей амплитуды ЭЭГ, уси­ление взаимосвязанности корковых нейронов, местные потенциалы готовности и др. феномены, связанные с повышением возбудимости корковых нейронов и созданием рабочей системы мозга. Выражен­ность этих феноменов отражает степень заинтересованности чело­века в реакции, скорость и силу ответных сокращений мышц. На уровне спинного мозга процессы преднастройки отражаются повышением возбудимости спинальных мотонейронов, в мышцах — повышением чувствительности проприорецепторов скелетных мышц. Сенсорная информация о результате выполнения движения, получаемая по Kai ш- лам обратной связи, используется нервными центрами для уточнения временных, пространственных и силовых характеристикдвигатель- ных актов, внесения поправок в команды — так называемых сенсор­ных коррекций (Н. А. Бернштейн, 1966; К. Прибрам, 1975).

6.1.2. РЕФЛЕКТОРНОЕ КОЛЬЦЕВОЕ РЕГУЛИРОВАНИЕ И ПРОГРАММНОЕ УПРАВЛЕНИЕ ДВИЖЕНИЯМИ

В двигательной деятельности человека различают произволь­ные движения —сознательно управляемые целенаправленные действияи непроизвольные движения, происходящие без участия сознания и представляющие собой либо безусловные реак­ции, либо автоматизированные двигательные навыки. В основе уп­равления произвольными движениями человека лежат два различных физиологических механизма: 1) рефлекторное кольцевое регулирование и 2) программное управление по механизму центральных команд.

Замкнутая система рефлекторного кольцевого регу- лирования характерна для осуществления различных форм двигательных действий и позных реакций, не требующих быстрого двигательного акта. Это позволяет нервн ым центрам получать ин­формацию о состоянии мышц и результатах их действий по различ­ным афферентным путям и вносить поправки в моторные команды по ходу действия.

Программное управление по механизму центральных команд — это механизм регуляции движений, независимый от аффе­рентных проприоцептивных влияний. Такое управление используется в случае выполнения кратковременных движений (прыжков, бросков, ударов, метаний), когда организм не успевает использовать информа­цию от проприорецепторов мышц и других рецепторов. Вся програм­ма должна быть готова еще до начала двигательного акта. При этом отсутствует замкнутое кольцо регуляции. Управление производится потак называемой открытой петле, а активность во многих произ­вольно сокращающихся мышцах возникает раньше, чем регистри­руется обратная афферентная импульсация. Например, при выпол­нении прыжковых движений электрическая активность в мышцах, направленная на амортизацию удара, возникает раньше, чем проис­ходит соприкосновение с опорой, т. е. она носит предупредитель­ный характер.

Такие центральные программы создаются согласно сформиро­ванному в мозге (главным образом—в ассоциативной передне-лоб­ной области коры) образу двигательного действия и цели движения. В дальнейшей конкретной разработке моторной программы принима­ют участие мозжечок (латеральная область его коры) и базальные ядра (полосатое тело и бледное ядро). И нформация от них поступает через таламус в моторную и премоторную области коры и далее — к исполнительным центрам спинного мозга и скелетным мышцам.

Механизм кольцевого регулирования является более древним фило­генетически и возникает раньше в процессе индивидуального разви­тия. Примерно к трем годам достаточное развитие получают зри­тельные обратные связи, осуществляющие текущий зрительно-мо­торный контроль, а с 5-6 лет происходит переход к текущему контро­лю движений с участием проприоцептивных обратных связей. Этот механизм достигает значительного совершенства к 7-9 летнему воз­расту, после чего начинается переход к формированию механизма центральных команд. К 10-11 годам повышение скорости произ- вольныхдвижений обеспечивается достаточным развитием процес­сов предварительного программирования их пространственных и временных параметров. С этого возраста представлены оба механиз­ма управления произвольными движениями, дальнейшее совершен­ствование которых продолжается вплоть до 17-19 лет.

Среди многоэтажных систем нервных центров обобщенно можно вьщелть три основных функциональных блока (Лурш А. Р., 1973):

1) блок регуляции тонуса, уровня бодрствования;

2) блок приема, переработки и хранения инфор­мации;

3) блок программирования, регуляциии контро­ля двигательной деятельности.

К первому функциональному блоку относятся неспецифические отделы нервной системы, в частности ретикуляр­ная формация ствола мозга, которые модулируют функциональное со­стояние вышележащих и нижележащих отделов, вызывая состояния сна, бодрствования, повышенной активности, увеличивая или уменьшая мощность двигательных реакций.

Второй функциональный блок расположен в задниц отделах полушарий и включает в свой состав зрительные (затылоч­ные), слуховые (височные), общечувствительные (теменные) об­ласти коры и соответствующие подкорковые структуры. Первич­ные (проекционные) корковые поля этого блока обеспечивают процессы ощущения, а вторичные поля — процессы восприятия, опознания информации. Высший отдел этого блока — третичные (ассоциативные нижнетеменные) поля, которые осуществляют сложные формы афферентного синтеза, создавая интегральный образ внешнего мира и обобщая сигналы, приходящие от левой и правой половины тела. Они формируют представления о «схеме тела» и «схеме пространства», обеспечивая пространственную ори­ентацию движений.

Третий функциональный блок расположен в передних отделах больших полушарий. В его состав входят первичные (мотор­ные) и вторичные (премоторные) поля, а высшим отделомявляются ассоциативные передне-лобные (или префронтальные) области (пе­редние третичные поля). Этот блок с участием речевых функций вы­полняет универсальную реакцию общей регуляции поведения, форми­руя намерения и планы, программы произвольных движений и конт­роль за их выполнением.

6.2. РОЛЬ РАЗЛИЧНЫХ ОТДЕЛОВ ЦНС В РЕГУЛЯЦИИ П03Н0-Т0НИЧЕСКИХ РЕАКЦИЙ

Мышечная деятельность включает в себя процессы осуществле­ния двигательных актов и процессы поддержания позы тела. Эти процессы регулируются различными отделами ЦНС.


Мышечный тонус является по своей природе рефлекторным ак­том. Для его возникновения достаточна рефлекторная деятельность спинного мозга. При длительном растяжении мышц в поле силы тя­жести возникает постоянное раздражение их проприорецепторов, потоки импульсов от которых проходят по толстым афферентным волокнам в спинной мозг, где передаются непосредственно (без уча­стия вставочных нейронов) на альфа-мотонейроны передних рогов и вызывают тоническое напряжение мышц. Такие двухнейронные (или моносинаптические) рефлекторные дуги лежат в основе тони­ческих сухожильных (с рецепторов сухожилий) имиотати- ческих рефлексов на растяжение (с рецепторов мышечных веретен). Это рефлексы активного противодействия мышцы ее рас­тяжению. В произвольной двигательной деятельности человека иногда требуется подавление этих рефлексов, например, при выпол­нении шпагата.

Степень тонического напряжения мышцы зависит от частоты им­пульсов, посылаемых к ней альфа-мотонейронами. Однако, потоки этих импульсов могут регулироваться вышележащими этажами не­рвной системы, в частности, неспецифическими отделами ствола мозга с помощью так называемой гамма — регуляции. Разряды гамма-мотонейронов спинного мозга под влиянием ретикулярной формации повышают чувствительность рецепторов мышечных ве­ретен. В результате при той же длине мышцы увеличивается поток импульсов от рецепторов к альфа-мотонейронам и далее к мышце, повышая ее тонус.

6.2.2. РОЛЬ КОРЫ ГОЛОВНОГО МОЗГА, МОЗЖЕЧКА И СТВОЛА МОЗГА

В регуляции тонуса участвует также медленная часть пирамид­ной системы и различные структуры экстрапирамидной системы (подкорковые ядра, красные ядра и черная субстанция среднего моз­га, мозжечок, ретикулярная формация ствола мозга, вестибулярные ядра продолговатого мозга).

Неспецифическая система вызывает общее изменение тонуса раз­личных мышц: усиление тонуса осуществляет активирующий отдел ретикулярной формации среднего мозга, а угнетение—тормозящий отдел продолговатого мозга. В отличие от нее специфическая систе­ма (моторные центры коры больших полушарий и ствола мозга) дей­ствует избирательно, т. е. на отдельные группы мышц-сгибателей или разгибателей. Усиление тонуса мышц-сгибателей вызывают корковые Влияния, передающиеся непосредственно К нейронам спинного мозга по корково-спинномозговой (пирамидной) системе, атакже через красные ядра (по корково-красноядерно-спинномоз- говой системе) и частично через ретикулярную формацию (по рети- куло-спинномозговой системе). В противоположность им, влияния,, передающиеся через вестибулярные ядра продолговатого мозга к вставочным и двигательным нейронам передних рогов спинного мозга (по вестибуло-спинномозговымпутям), вызываюттоническое повышение возбудимости мотонейронов мышц-разгибателей, что обеспечивает повышение тонуса этих мышц.

Мозжечок формирует правильное распределение тонуса скелет­ных мышц: через красные ядра среднего мозга он повышает тонус мышц-сгибателей, а через вестибулярные ядра продолговатого моз-> га — усиливает тонус мышц-разгибателей. В поддержании позы и равновесия тела, регуляции тонуса мышц основное значение имеет медиальная продольная зона мозжечка—кора червя. При мозжечко­вых расстройствах падает тоническое напряжение мышц (атония) и вследствие ненормального распределения тонуса мышц конечностей возникает нарушение походки (атаксия).

Бледное ядро угнетает тонус мышц, а полосатое тело снижает его угнетающее действие.

Высший контроль тонической активности мышц осуществляет кора большихполушарий, в частности ее моторные, премоторные и лобные области. С ее участием происходит выбор наиболее целесооб­разной для данного момента позы тела, обеспечивается ее соответ­ствие двигательной задаче. Непосредственное отношение к регуля­ции тонуса мышц имеют медленные пирамидные нейроны по­ложения. Корковые влияния на тонические реакции мышц пере­даются через медленную часть пирамидного тракта И через экстрапирамидную систему.

6.2.3. РЕФЛЕКСЫ ПОДДЕРЖАНИЯ ПОЗЫ (УСТАНОВОЧНЫЕ)

Специальная группа рефлексов способствует сохранению позы — это так называемые установочные рефлексы. К ним относятся статические и стато-кинетическиерефлексы, в осуще­ствлении которых большое значение имеют продолговатый и сред­ний мозг.

Статические рефлексы возникают при изменении положения тела или его частей в пространстве. 1) при изменениях положения головы в пространстве—лабиринтные рефлексы, возни­кающие при раздражении рецепторов вестибулярного аппарата, 2) шейныерефлексы~возникающие с проприорецептороц мышц шеи при изменении положения головы по отношению ктуловищу, и 3) выпрямительные рефлексы — с рецепторов кожи, вестибулярного аппарата и сетчатки глаза. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед— тонус мышц-сгибателей (лабиринтный рефлекс). С помощью вып­рямительного рефлекса происходят последовательные сокращения мышц шеи и туловища, а затем и конечностей. Этот рефлекс обеспе­чивает вертикальное положение тела теменем кверху. У человека он проявляется, например, при нырянии.

Стато-кинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного дви­жения (лифтный рефлекс), а также при вращениях (отклонения го­ловы, тела и глаз в сторону, противоположную движению). Переме­щение глаз со скоростью вращения тела, но в противоположную сто­рону, и быстрое их возвращение в исходное положение —нистагм г л а з — обеспечивает сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию.

6.3. РОЛЬ РАЗЛИЧНЫХ ОТДЕЛОВ ЦНС В РЕГУЛЯЦИИ ДВИЖЕНИЙ

Спинной мозг обеспечивает протекание многих элементарных двигательных рефлексов, включение которых в сложные двигатель­ные акты и регуляция по мощности, пространственной ориентации и моменту включения осуществляется вышележащими отделами го­ловного мозга под контролем коры больших полушарий.

6.3.1. РОЛЬ СПИННОГО МОЗГА И ПОДКОРКОВЫХ ОТДЕЛОВ ЦНС В РЕГУЛЯЦИИ ДВИЖЕНИЙ

Спинной мозг осуществляет ряд элементарных двига­тельных рефлексов: рефлексы на растяжение (миотатичес- кие и сухожильные рефлексы, например, коленный рефлекс), кож­ные сгибательные рефлексы (например, защитный рефлекс отдерги­вания конечности при уколах, ожогах), разгибательныерефлексы (рефлекс отталкивания от опоры, лежащий в основе стояния, ходь­бы, бега), перекрестные рефлексы и др.

Элементарные двигательные рефлексы вклю­чаются в более сложные двигательные акты—регуляцию деятельно­сти мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только со­кращение мышц-сгибателей, но и одновременное расслабление мышц-разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибате­лей — торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие ко­


ординационные взаимоотношения между спинальными моторными центрами названы реципрокной (взаимосочетанной) иннервацией мышц-антагонистов. Однакореципрокные отношения между центрами мышц-антагонистов в необходимых си­туациях (например, при фиксации суставов, при точностных движе­ниях) могут сменяться одновременным их возбуждением.

Составной частью различных сложных двигательныхдействий, как произвольных, так и непроизвольных, часто являются ритми­ческие рефлексы. Это одна из форм древних и относительно простых рефлексов. Они особенно выражены при выполнении цик­лической работы, включаются в шагательнЫе рефлексы. Основные механизмы шагательных движений заложены в спинном мозге. Специальные нейроны {спинальные локомоторные генерато­ры) и многочисленные взаимосвязи внутри спинного мозга обеспе­чивают последовательную активность различных мышц конечнос­тей, согласование ритма и фаз движений, приспособление движений к нагрузке на мышцы. В среднем мозгу расположены нейроны «локо­моторной области», которые включают этот механизм и регулируют мощность работы мышц, обеспечивая примитивную форму локомо- ции — без ориентации в пространстве.

Нейроны промежуточной продольной зоны коры мозжечка согла­суют позные реакции с движениями. Они выполняют также точ­ные расчеты по ходу движений, необходимые для коррекции оши­бок и адаптации моторных программ к текущей ситуацииf Про­граммирование каждого последующего шага осуществляется ими на основе анализа предыдущего. Кроме того производится согласо­вание движений рук и ног, и особенно — регуляция активности мышц-разгибателей, обеспечивающих опорную фазу движения. Значение мозжечка в четком поддержании темпа ритмических Лн/жениа объясняют геометрически правильным чередованием ря­дов эфферентных клеток Пуркинье и походящих к ним афферент­ных волокон.

Куправлениюритмическими движениями непосредственное от­ношение имеют активирующие и угнетающие отделы ретикулярной формации, влияющие на силу и темп сокращения мышц, а также под­корковые ядра, которые организуют автоматическое их протекание и содружественные движения конечностей. Включение древних форм ритмических движений (циклоидных) в акт письма позволяет челове­ку перейти от отдельного начертания букв к обычной письменной скорописи. То же самое происходит при освоении акта ходьбы—с переходом от отдельных шагов к ритмической походке. Плавность ритмических движений, четкое чередование реципрокных сокраще* ни й мышц обеспечивают премоторные отделы коры.

6.3.2. РОЛЬ РАЗЛИЧНЫХ ОТДЕЛОВ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

Функцией комплекса различных корковых областей является опре­деление целесообразности локомоций, их смысла, ориентации в про­странстве, перестройка программ движений вразличных ситуациях, включение ритмических движений как составного элемента в слож­ные акты поведения. Об участии различных корковых областей в ре- гуляции циклических движений можно судить по появлению в их электрической активности медленных потенциалов в темпе движе­ния — «меченых ритмов « ЭЭГ, а при редких движениях — по изме­нениям огибающей амплитуду ЭЭГ кривой.

В организации двигательных актов участвуют практически все отделы коры больших полушарий. Моторная область коры (прецентральная извилина) посылает импульсы к отдельным мыш­цам, преимущественно кдистальным мышцам конечностей. Объе­динение отдельных элементов движения в целостный акт («кинети­ческую мелодию») осуществляют вторичные поля пре- моторной области. Они определяют последовательность двигательных актов, формируют ритмические серии движений, ре­гулируют тонус мышц. Постцентральная извилина коры представляет собой общечувствительное поле, которое обеспечивает субъективное ощущение движений. Нижнетеменные облас­ти коры (задние третичные поля) формируют представления о взаимном расположении различных частей тела и положении тела в пространстве, обеспечивают точную адресацию моторных команд к отдельным мышцам и пространственную ориентацию движений. Области коры, относящиеся к лимбической си­стеме (нижние и внутренние части коры), ответственны за эмоци­ональную окраску движений и управление вегетативными их компо­нентами.

В высшей регуляции произвольных движений важнейшая роль при­надлежит передне-лобным областям (переднимтретичным полям). Здесь помимо обычных вертикальных колонок нейронов су­ществует принципиалыю новый тип функциональной единицы—в форме замкнутого нейронного кольца. Циркуляция импульсов в этой замкну­той системе обеспечивает кратковременную память. Она сохраняете коре возбуждение между временем прихода сенсорных сигналов и формированием ответной эфферентной команды. Такой механизм служит основой сенсомоторной интеграции при программировании движений, при осуществлении зрительно-двигательных реакций.








Дата добавления: 2015-05-21; просмотров: 678;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.02 сек.