ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 2 страница

Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к нижележащим или из ЦНС к рабочим органам. Для эффе­рентных нейронов характерны разветвленная сеть коротких отрост­ков —дендритов и один длинный отросток—аксон.

Промежуточные нейроны (интернейроны, или вставочные)—это, как правило, более мелкие клетки, осуществляю­щие связь между различными (в частности, афферентными и эффе­рентными) нейронами. Они передают нервные влияния в горизон­тальном направлении (например, в пределах одного сегмента спин­ного мозга) и в вертикальном (например, из одного сегмента спинно­го дюзга в другие—■ выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.

3.2.3. ВОЗБУЖДАЮЩИЕ И ТОРМОЗЯЩИЕ СИНАПСЫ

Взаимодействие нейронов между собой (и с эффекторными орга- нами) происходит через специальные образования — синапсы (греч.—контакт). Они образуются концевыми разветвлениями ней­рона на теле или отростках другого нейрона. Чем больше синапсов на нервной клетке, тем больше она воспринимает различных раздраже­ний и, следовательно, шире сфера влияний на ее деятельность и воз­можность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы иименноу ней­ронов с наиболее сложными функциями.

В структуре синапса различаюттри элемента (рис. 2):

1) пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона;

2) синаптическую щель между нейронами;

3) постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.

Рис. 2. Схема синапса Пре. — пресинаптическая мембрана,

Поры

Пост. — постсинаптическая мембрана,

С — синаптические пузырьки, Щ — синаптическая щель,

М — митохондрии.

Ах — ацетилхолин Р — рецепторы U порь! (Порыf дендрита (Д) следующего нейрона,

Стрелка — одностороннее проведение возбуждения.

В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части кон­такта имеются синаптические пузырьки, которые содержат специаль­ные вещества — медиаторы или посредники. И ми могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окон­чания аксона нервные импульсы вызывают опорожнение синаптичес­ких пузырьков и выведение медиатора в синаптическую щел£>.

По характеру воздействия на последующую нервную клетку разли­чают возбуждающие и тормозящие синапсы. '

Ввозбуждающих синапсах медиаторы (например, ацетилхолин) связываются со специфическими макромолекулами по- стсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранногоПотенциалавсторонудей<мя/шда<ш!Или возбуждаю- щий постсинаптический потенциал (ВПСП).Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня. Для этого величинадеполяризационного сдвига мембранного потенциала должна составлять не менее 10 мВ. Действие медиатора очень кратковременно (1 -2 мс), после чего он расщепляется на неэф­фективные компоненты (например, ацетилхолин расщепляется фер­ментом холинэстеразойнахашниуксуспую кислоту) или поглощается обратно пресинаптическими окончаниями (например, норадреналин).

В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их дей­ствие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны. При этом регистрируется кратковременное колебание мембранного по­тенциала в сторону гиперполяризации—тормозящий постси­наптический потенциал (ТПСП). В результате нервная

клетка оказывается заторможенной. Возбудить ее труднее, чем в ис­ходном состоянии. Для этого понадобится более сильное раздраже­ние, чтобыдостичь критического уровня деполяризации.

3.2.4. ВОЗНИКНОВЕНИЕ ИМПУЛЬСНОГО ОТВЕТА НЕЙРОНА

На мергбране тела и дендратов нервной клетки находятся как воз­буждающие, так и тормозящие синапсы. В отдельные моменты вре­мени часть их может быть неактивной, а другая часть оказывает ак­тивное влияние на прилегающие к ним участки мембраны. Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновремен­ном влиянии как возбуждающих, так и тормозящих синапсов проис­ходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов. При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающихпостсинаптическихпотенциалов окажется больше суммы тормозящих. Это превышение должно со­ставлять определенную пороговую величину (около 10 мВ).Тольков этом случае появляется потенциал действия клетки. Следует отме­тить, что в целом возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость.

С появлением потенциала действия начинается процесс проведе­ния нервного импульса по аксону и передача его на следующий ней­рон или рабочий орган, т.е. осуществляется эффекторная функция нейрона. Нервный импульс является основным средством связи меж­ду нейронами.

Таким образом, передача информации в нервной систем происхо­дит с помощью двух механизмов — электрического (ВПСП; ТПСП; потенциал действия) и химического (медиаторы).

3.3. ОСОБЕННОСТИ ДЕЯТЕЛЬНОСТИ НЕРВНЫХ ЦЕНТРОВ

Свойства нервных центров в значительной мере связаны с осо­бенностями проведения нервных импульсов через синапсы, связы­вающие различные нервные клетки.

3.3.1. ОСОБЕННОСТИ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ ЧЕРЕЗ НЕРВНЫЕ ЦЕНТРЫ

Нервным центром называют совокупность нервных клеток, необходимых для осуществления какой-либо функции. Эти центры от­вечают соответствующими рефлекторными реакциями на внешнее


раздражение, поступившее от связанных с ними рецепторов. Клетки нервных центров реагируют и на непосредственное их раздражение веществами, находящимися в протекающей через них крови (гумо­ральные влияния). В целостном организме имеется строгое согласо­вание — координация их деятельности.

Проведение волны возбуждения от одного нейрона к другому через синапс происходит в большинстве нервных клеток химическим пу­тем — с помощью медиатора, а медиатор содержится лишь в преси- наптической части синапса и отсутствует в постсинаптической мем­бране. Поэтом '(важной особенностью проведения возбуждения через синаптические контакты является одностороннее прове­дение нервных влияний, которое возможно лишь от пресинапти- ческой мембраны к постсинаптической и невозможно в обратном направленииЗв связи с этим поток нервных импульсов в рефлек­торной дуге имеет определенное направление от афферентных ней­ронов к вставочным и затем к эфферентным — мотонейронам или вегетативным нейронам.

Большое Значение в деятельности нервной системы Имеет дру­гая особенность проведения возбуждения через синапсы — замед­ленное проведение. Затрата времени на процессы, происходящие от момента подхода нервного импульса к преси- наптической мембране до появления в постсинаптической мемб­ране потенциалов,называется синаптической задерж­кой. В большинстве центральных нейронов она составляет около

0.3 мс. После этого требуется еще время на развитие Возбуждаю­щего постсинаптического потенциала (ВПСП) и потенциала дей­ствия. Весь процесс передачи нервного импульса (от потенциала действия одной клетки до потенциала действия следующей клет­ки) через один синапс занимает примерно 1.5 мс. При утомлении, охлаждении и ряде других воздействий длительность синаптичес­кой задержки возрастает. Если же для осуществления какой-либо реакции требуется участие большого числа нейронов (многих со­тен и даже тысяч), то суммарная величина задержки проведения по нервным центрам может составить десятые доли секунды и даже целые секунды.

При рефлекторной деятельности общее время отмомента нане­сения внешнегораздражения до появления ответной реакции организ­ма—так называемое скрытое или латентное время ре­флекс af определяется в основном длительностью проведения через синапсы. Величина латентного времени рефлекса служит важным показателем функционального состояния нервных центров. Измере­ние латентного времени простой двигательной реакции человека на внешний сигнал широко используется в практике для оценки функ­ционального состояния ЦНС (рис. 3).


Рис. 3. Схема измерения времени двигательной реакции А — афферентные,

Э — эфферентные и Ц — центральные пути; С— отметка светового сигнала,

t 150мс

О — отметка нажима кнопки,

1150мс — время реакции.


 

 


3.3.2. СУММАЦИЯ ВОЗБУЖДЕНИЯ

В ответ на одиночную афферентную волну, идущую от рецепторов кнейронам, в пресинаптической части синапса освобождается неболь­шое количество медиатора. При этом в постсинаптической мембране нейрона обычно возникает ВПСП — небольшая местная деполяриза­ция. Для того, чтобы общая по всей мембране нейрона величина ВПСП достигала порога возникновения потенциаладействия, требу­ется суммацияна мембране клетки многих подпороговых ВПСП. Лишь в результате такой суммации возбуждения возникает ответ ней­рона. Различают пространственную и временную суммацию.

Пространственная суммация наблюдается в случае одновременного поступления нескольких импульсов в один и тот же нейрон по разным пресинаптическим волокнам. Одномомент­ное возбуждение синапсов в различных участках мембраны нейро­на повышает амплитуду суммарного ВПСП до пороговой величи­ны. В результате возникает ответный импульс нейрона и осуществ­ляется рефлекторная реакция. Например, для получения ответа двигательной клетки спинного мозга обычно требуется одновре­менная активация 50-100 афферентных волокон от соответствую­щих периферических рецепторов..

Временная суммация происходит при актйвации одного и того же афферентного пути серией последовательных раздраже­ний. Если интервалы между поступающими импульсами достаточно коротки и ВПСП нейрона от предыдущих раздражений не успевают затухать, то последующие ВПСП накладываются друг на друга, пока деполяризация мембраны нейрона не достигнет критического уров­ня для возникновения потенциала действия)\Таким способом даже слабые раздражения через i (екоторое время могут вызывать ответные реакции организма (например, чихание и кашель в ответ на слабые раздражения слизистой оболочки дыхательных путей).

3.3.3. ТРАНСФОРМАЦИЯ И УСВОЕНИЕ РИТМА

Характер ответного разряда нейрона зависит не только от свойств раздражителя, но и от функционального состояния самого нейрона (его мембранного заряда, возбудимости, лабильности). Не­рвные клетки обладают свойством изменять частоту передающихся импульсов, т. е, свойством трансформации ритма.

При высокой возбудимости нейрона (например, после приема ко­феина) может возникать учащение импульсации (мультипликация ритма), а при низкой возбудимости (например, при утомлении) происходит урежете ритма, так как несколько приходящих им­пульсов должны суммироваться, чтобы наконец достичь порога воз­никновения потенциаладействия. Эти изменения частоты импуль­сации могут усиливать или ослаблять ответные реакции организма на внешние раздражения.

При ритмических раздражениях активность нейрона можетна- строиться на ритм приходящих импульсов,т. е. наблюдается явле­ние усвоения ритма (Ухтомский А. А., 1928). Развитие усвоения ритма обеспечивает сонастройку активности многих нерв­ных центровпри управлении сложными двигательными актами, осб- бенноэто важно для поддержания темпа циклических упражнений.

3.3.4. СЛЕДОВЫЕ ПРОЦЕССЫ

После окончания действия раздражителя активное состояние не­рвной клетки или нервного центра обычно продолжается еще неко­торое время. Длительность следовых процессов различна: неболь­шая в спинном мозге (несколько секунд или минут), значительно больше в центрах головного мозга (десятки минут, чась1 или даже дни) и очень большая в коре больших полушарий (до нескольких десятков лет).

Поддерживатьявное и кратковременное состояние возбуждения в нервном центре могут импульсы, циркулирующие по замкнутым цепям нейронов. Значительно сложнее по природе длительно сохра­няющиеся скрытые следы. Предполагают, что длительное сохране­ние в нервной клетке следов со всеми характерными свойствами раз­дражителя основано на изменении структуры составляющих клетку белков и на перестройке синаптических контактов.

Непродолжительные импульсные последействйя (длительнос­тью до 1 часа) лежат в основе так называемой кратковремен­ной памяти, адлительные следы, связанные со структурными и биохимическими перестройками в клетках, — в основе формирова­ния долговременной памяти.


Процессы координации деятельности ЦНС основаны на согласо­вании двух нервных процессов — возбуждения и торможения. Тор­можение является активным нервным процессом, который предуп­реждает или угнетает возбуждение.

3.4.1. ЗНАЧЕНИЕ ПРОЦЕССА ТОРМОЖЕНИЯ В ЦНС

Явление торможения в нервных центрах было впервые открыто И* М, Сеченовым в 1862 г. Значение этого процесса было рассмотре­но им в книге «Рефлексы головного мозга» (1863).

Опуская лапку лягушки в кислоту и одновременно раздражая не­которые участки головного мозга (например, накладывая кристал­лик поваренной соли на область промежуточного мозга), И. М. Сече­нов наблюдал резкую задержку и даже полное отсутствие «кислотно­го» рефлекса спинного мозга (отдергивания лапки). Отсюда он сде­лал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность ниже­лежащих. Описанный опыт вошел в историю физиологии под назва­нием Сеченовское торможение. >

Тормозные процессы — необходимый компонент в координации нервной деятельности. Во-первых, процесс торможения ограничивает распространение возбуждения на соседние нервные центры, чем спо­собствует его концентрации в необходимых участках нервной систе­мы. Во-вторых, возникая в одних нервных центрах параллельно с воз­буждением других нервных центров, процесс торможения тем самым вьиаиочает деятельность ненужных в данныймамент органов. В-треть- их, развитие торможения в нервных центрах предохраняет их от чрез­мерного перенапряжения при работе, т. е. играет охранительную роль.

3.4.2. ПОСТСИНАПТИЧЕСКОЕ И ПРЕСИНАЛТИЧЕСКОЕ ТОРМОЖЕНИЕ

Процесс торможения, в отличие от возбуждения, неможетрас- нространяться по нервному волокну—это всегда местный процесс в области синаптических контактов. По месту возникновения различа­ют пресинаптическое и постсинаптическое торможение.

Постсинаптическое торможение — это тормозные эффекты, возникающие в постсинаптической мембране. Чаще всего этот вид торможения связан с наличие^ в ЦНС специальных тор­мозных нейронов. Они представляют собой особый тип вставочных нейронов, у которых окончания аксонов выделяют тор- мозный медиатор. Одним изтаких медиаторов является гамма-ами­номасляная кислота (ГАМ К).

Нервные импульсы, подходя к тормозным нейронам, вызыёают в них такой же процесс возбуждения, как и в других нервных клетках. В ответ по аксону тормозной клетки распространяется Ьбычный потен­циал действия. Однако, в отличие от других нейронов, окончания аксона при этом выделяют не возбуждающий, а тормозной медиатор. В результате тормозные клетки тормозят те нейроны, на которых оканчиваются их аксоны.

К специальным тормозным нейронам относятся клетки Рэншоу в спинном мозге, клетки Пуркинье мозжечка, корзинчатЫе клетки h промежуточном мозге идр. Большое значение, например, тормозные клетки имеют при регуляции деятельности мышц-антагонистов: приводя к расслаблению мышц антагонистов, они облегчаюттем Са­мым одновременное сокращение мышц-агонистов (рис.4).

Клетки Рэншоу участвуют в регуляции уровня активности отдельных мотонейронов спинного мозга. При возбуждении мото­нейрона импульсы поступают по его аксону кмышечным волокнйм и одновременно по коллатералям аксона—ктормозной клетке Рэн- шоу. Аксоны последней «возвращаются» к этому же нейрону, вызы­вая его торможение. Чем больше возбуждающих импульсов посыла­ет мотонейрон на периферию (а значит, и ктормозной клетке), Тем сильнее это возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система дей-

Рис. 4. Участие тормозной клетки в регуляции мышц-антагонистов ВиТ— возбуждающий и тормозный нейроны. Возбуждение (+) Мотоней­рона мышцй-сгибателя (МС) и торможение (—) мотонейрона мышцы - разгибателя (МР). Р — кожный рецептор.

 

ствует какмеханизм саморегуляции нейрона, предохраняя его от чрез­мерной активности. •

Клетки Пуркинье мозжечка своими тормозными влияниями на клетки подкорковых ядер и стволовых структур уча- ствуютв регуляции тонуса мышц.

КорзиНчатые клетки в промежуточном мозге являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий от различных областей тела.

Пресинаптическое торможение возникает перед синаптическим контактом—В пресинаптической области. Оконча­ние аксона тормозной нервной клетки образует синапс на конце ак­сона возбуждающей нервной клетки, вызывают чрезмерно сильную деполяризацию мембраны этого аксона, которая угнетает проходя­щие здесь потенциалы действия и тем самым блокирует передачу возбуждения. Этот вид торможения ограничивает поток афферент­ных импульсов к нервным центрам, выключая посторонние для ос­новной деятельности влияния.

3.4.3. ЯВЛЕНИЯ ИРРАДИАЦИИ И КОНЦЕНТРАЦИИ

При раздражении одного рецептора возбуждение может в прин­ципе распространяться в ЦНСвлюбомнаправлении и налюбуюне­рвную клетку. Это происходит благодаря многочисленным взаимо­связям нейронов одной рефлекторной дуги с нейронами других реф­лекторных дуг. Распространение процесса возбуждения на другие не­рвные центры называют явлением иррадиации.

Чем сильнее афферентное раздражение и чем выше возбудимость окружающих нейронов, тем больше нейронов охватывает процесс иррадиации. Процессы торможения ограничивают иррадиацию и способствуют концентрации возбуждения в исходном пункте ЦНС.

Процесс иррадиации играет важную положительную роль при формировании новых реакций организма (ориентировочных реак­ций, условных рефлексов). Чем больше активируется различных нервных центров, тем легче отобрать из их числа наиболее нужные для последующей деятельности центры. Благодаря иррадиации воз­буждения между различными нервными центрами возникают но­вые функциднальные взаимосвязи—условные рефлексы. Н а этой ос­нове возможно, например, формирование новых двигательных на­выков.

Вместе с тем, иррадиация возбуждекия может оказать и о/п/ш- цателъное воздействие на состояние и поведение организма, нару­шая тонкие взаимоотношения между возбужденными и затормо­женными нервными центрами и вызывая нарушения координации движений.

3.4.4. ДОМИНАНТА

Исследуя особенности межцентральных отношений, А, А. Ух­томский обнаружил, что если в организме животного осуществля­ется сложная рефлекторная реакция, например, повторяющиеся акты глотания, то электрическое раздражение моторных центрцв не только перестает вызывать в этот момент движение конечностей, но и усиливает протекание начавшейся цепной реакции глотания, которая оказалась главенствующей.

Такой господствующий очаг возбуждения в ЦНС, определяющий текущую деятельность организма, А, А. Ухтомский (1923) обозна­чил термином доминанта.

Доминирующий очаг может возникнуть при повышенном уровне возбудимости нервных клеток, который создается различными гу­моральными и нервным^ влияниями. Он подавляет деятельность других центров, оказывая сопряженное торможение,

Объединение большого числа нейронов в одну доминантную си­стему происходит путем взаимного сонастраивания на общий темп активности, т. е. путем усвоения ритма. Одни нервные клетки снижают свой более высокий темп деятельности, а другие — повы­шают низкий темп до некоторого среднего, оптимального ритма. Доминанта может надолго сохраняться в скрытом, следовом состоя­нии (потенциальная доминанта). При возобновлении прежнего со­стояния или прежней внешней ситуации доминанта может снова возникнуть (актуализация доминанты). Например, в предстарто­вом состоянии активизируются все те нервные центры, которые входили в рабочую систему во время предыдущих тренировок, и, соответственно, усиливаются функции, связанные с работой. Мыс­ленное выполнение физических упражнений или представление движений также воспроизводит рабочую доминанту, что обеспечи­вает тренирующий эффект представления движений ияв/гяется ос­новой так называемой идеомоторной тренировки. При полном рас­слаблении (напр, при аутогенной тренировке) спортсмены добива­ются устранения рабочих доминант, что ускоряет процессы восста­новления.

Как фактор поведения, доминанта связана с высшей нервной дея­тельностью и психологией чсловека^Цоминантаявляется физиоло­гической основой акта внимания. При наличии доминанты многие 'влияния внешней среды остаются вне нашего внимания, но зато бо- дёе интенсивно улавливаются и анализируются те, которые нас осо­бенно интересуют. Таким образом, доминанта является мощным фактором отбора биологически и социально наиболее значимых раз­дражений. -

3.5. ФУНКЦИИ СПИННОГО МОЗГА И ПОДКОРКОВЫХ ОТДЕЛОВ ГОЛОВНОГО МОЗГА

В ЦНС различают более древние сегментарныеи эволюционно более молодые надсегментарные отделы нервной системы. К сегмен­тарным отделам относят спинной, продолговатый и средний мозг, участки которых регулируют функции отдельных частей тела, лежа­щих на том же уровне. Надсегментарные отделы—промежуточный мозг, мозжечок и кора больших полушарий не имеют непосредствен­ных связей с органами тела, а управляют их деятельностью через ни­жележащие сегментарные отделы.

3.5.1. СПИННОЙ МОЗГ

Спинной мозг является низшим и наиболее древним отделом ЦНС. В составе серого вещества спинного мозга человека насчитывают около 13.5 млн. нервных клеток. Из них основную массу (97%) пред­ставляют промежуточные клетки (вставочные или интернейроны), которые обеспечивают сложные процессы координации внутри спинного мозга. Среди мотонейронов спинного мозга выделяют крупные альфа-Мотонейроны имелкие —гамма-мото- нейрон ы. От альфа-мотонейронов отходят наиболее толстые и быстропроводящие волокна двигательных нервов, вызывающие со­кращения скелетных мышечных волокон. Тонкие волокна гамма- мотонейронов Не вызывают сокращения мышц. Они подходят к про- приорецепторам — мышечным веретенам и регулируют их чувстви­тельность.

Рефлексы спинного мозга можно подразделить на двигательные, осуществляемые альфа-мотонейронами передних ро­гов, и вегетативные, осуществляемые афферентными клетками бо­ковых рогов.

Мотонейроны спинного мозга иннервируют все скелетные мышцы (за исключением мышцлица). Спинной мозг осуществляет элемен­тарные двигательные рефлексы — сгибательные и разгибательные, ритмические, шагательные, возникающие при раз­дражении кожи или проприорецепторов мышц и сухожилий, а также посылает постоянную импул ьсацию к мышцам, поддерживая мы­шечный тонус. Специальные мотонейроны иннервируют дыха­тельную мускулатуру—межреберные мышцы и диафрагму, и обеспе­чивают Дыхательные движения. Вегетативные нейроны иннервируют все внутренние органы (сердце, сосуды, потовые железы, железы внут­ренней секреции, пищеварительный тракт, мочеполовую систему).

Проводниковая функция спинного мозга связана с передачей в вышележащие отделы нервной системы получаемого с периферии потока информации и с проведением импульсов, идущих из головного мозга в спинной.

За последние годы разработаны специальные методики для изу­чения деятельности спинного мозга у здорового человека. Так, на­пример, функциональное состояние альфа-мотонейронов оценива­ют по изменению ответных потенциалов мышц при периферических раздражениях—так называемому Н-рефлексу (рефлексу Гофмана) икроножной мышцы при раздражении большеберцового нерва и по Т-рефлексу (от тендон — сухожилие) камбаловидной мышцы при раздражении ахиллова сухожилия. Разработаны методики регистра­ции (с неповрежденных покрововтела) потенциалов, проходящих по спинному мозгу в головной.

3.5.2. ПРОДОЛГОВАТЫЙ МОЗГ И ВАРОЛИЕВ МОСТ

Продолговатый мозги варолиев мост (в целом — задний мозг) являются частью ствола мозга. Здесь находится большая группа че­репномозговых нервов (от V до XII пары), иннервирующих кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов (сердце, легкие, печень). Тут же находятся центры многих пищевари - тельных рефлексов—жевания, глотания, движений желудка и части кишечника, выделения пищеварительных соков, а также центры ие- которых защитных рефлексов (чихания, кашля, мигания, слезоотде­ления, рвоты) и центры водно-солевого и сахарного обмена, Надне IV желудочка в продолговатом мозге находится жизненно важный ды­хательный центр, состоящий из центров вдоха и выдоха. Его состав* ляютмелкие клетки, посылающие импульсы кдыхательным мыш­цам через мотонейроны спинного мозга.

В непосредственной близости расположен сердечно-сосудистый центр. Его крупные клетки регулируют деятельность сердца и про­свет сосудов. Переплетение клеток дыхательного и сердечно-сосуди­стого центров обеспечивает их тесное взаимодействие.

Продолговатый мозг играет важную роль в осуществлении двига­тельных актов и в регуляции тонуса скелетных мышц, повышая тонус мышц-разгибателей. Он принимает участие, в частности, в осуществ- лении установочных рефлексов позы (шейных, паЪщитн\лх), Через продолговатый мозг проходят восходящие пути слуховой, веспшбуляр- ной, проприоцептивной и тактильной чувствительности.

3.5.3. СРЕДНИЙ МОЗГ

В состав среднего мозга всходят четверохолмия, черная субстан­ция и красные ядра. Впередних буфах четверохолмия находятся зри­тельные подкорковые центры,авзааних— слуховые. Средний мозг

участвует в регуляции движений глаз, осуществляет зрачковыйрефлекс (расширение зрачков в темноте и сужение их на свету).

Четверохолмия выполняют ряд реакций, являющихся компонен­тами ориентировочного рефлекса. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у жи­вотных — настораживание ушей. Этот рефлекс (по И. П. Павлову, • рефлекс «Что такое?») необходим для подготовки организма к своев­ременной реакции налюбое новое воздействие.

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук) и в организации содружественныхдвигательных реакций.

Красное ядро среднего мозга выполняет моторные функции — ре­гулирует тонус скелетных мышц, вызывая усиление тонуса мышц- сгибателей. Оказывая значительное влияние на тонус скелетных мышц, средний мозгпринимаетучастие в рядеустановочныхрефлек- ' сов поддержания позы (выпрямительных — установке тела теменем вверх и др.).

3.5.4. ПРОМЕЖУТОЧНЫЙ МОЗГ

В состав промежуточного мозга входят таламус (зрительные буг­ры) и гипоталамус (подбугорье).

Через таламус проходят все афферентные пути (за исключе- нием обонятельных), которые направляются в соответствующие воспринимающие области коры (слуховые, зрительные и пр.). Ядра таламуса подразделяются на специфические и неспецифические. К специфическим относят переключательные (релейные) ядра и ассоци­ативные. Через переключательные ядра таламуса передаются аффе­рентные влияния от всех рецепторов тела. Ассоциативные ядра полу­чают импульсы от переключательных ядер и обеспечивают их взаи­модействие. Помимо этих ядер в таламусе имеются неспецифические ядра, которые оказывают как активирующие, так и тормозящие вли­яния на небольшие области коры.

Благодаря обширным связям таламус играет важнейшую роль в жизнедеятельности организма. Импульсы, идущие от таламуса в кору, изменяют состояние корковых нейронов и регулируют ритм корковой активности. С непосредственным участием тала­муса происходит образование условных рефлексов и выработка двигательных навыков, формирование эмоций человека, его ми­мики. Таламусу принадлежит большая роль в возникновении ощущений, в частности ощущения боли. С его деятельностью связыва- ютрегуляцию биоритмов в жизни человека (суточных, сезонных и др.).

Г ипоталамус является высшим подкорковым центрам регуля­ции вегетативных функций, состояний бодрствования и сна. Здесь расположены вегетативные центры, регулирующие обмен вещества организме, обеспечивающие поддержание постоянства темпера­туры тела (у теплокровных) и нормального уровня кровяного дав­ления, поддерживающие водный баланс, регулирующие чувство го­лода и насыщения. Раздражения задних ядер гипоталамуса вызывает усиление симпатических влияний, а передних — парасимпатичес­кие эффекты.

Благодаря связи гипоталамуса с гипофизом (гипоталамо-ги- пофизарная система) осуществляется контроль деятельности желез внутренней секреции. Вегетативные и гормональные реакции, регулируемые гипоталамусом, являются компонентами эмоцио­нальных и двигательных реакций человека.








Дата добавления: 2015-05-21; просмотров: 681;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.027 сек.