ВВЕДЕНИЕ. ИСТОРИЯ ФИЗИОЛОГИИ 1 страница
1.1. ПРЕДМЕТ ФИЗИОЛОГИИ, ЕЕ СВЯЗЬ С ДРУГИМИ НАУКАМИ И ЗНАЧЕНИЕ ДЛЯ ФИЗИЧЕСКОЙ КУЛЬТУРЫ И СПОРТА
Физиология ■— это наука о функциях и механизмах деятельности клеток, тканей, органов, систем и всего организма в целом. Физиологическая функция—это проявление жизнедеятельности, имеющее приспособительное значение.
Физиология как наука неразрывно связана с другими дисциплинами. Она базируется на знаниях физики, биофизики и биомеханики, химии и биохимии, общей биологии, генетики, гистологии, кибернетики, анатомии. В свою очередь, физиологияявляется основой медицины, психологии, педагогики, социологии, теории и методики физического воспитания. В процессе развития физиологической науки из общей физиологии выдел илисьразличные ее частные разделы: физиология труда, физиология спорта, авиакосмическая физиология, физиология подводного труда, возрастная физиология, психофизиология и др.
Общая физиология представляет собой теоретическую основу физиологии спорта. Она описывает основные закономерности деятельности организма людей разного возраста и пола, различные функциональные состояния, механизмы работы отдельных органов и систем организма и их взаимодействия. Ее практическое значение состоит в научном обосновании возрастных этапов развития организма человека, индивидуальных особенностях отдельных людей, механизмов проявления ихфизическихи умственных способностей, особенностей контроля и возможностей управления функциональным состоянием организма. Физиология вскрывает последствия вредных привычек у человека, обосновывает пути профилактики функционал ьных нарушений и сохранение здоровья. Знания физиологии помогают педагогу и тренеру в процессах спортивного отбора и спортивной ориентации, в прогнозировании успешности соревновательной деятельности спортсмена, в рациональном построении тренировочного процесса, в обеспечении индивидуализации физических нагрузоки открывают возможности использования функциональных резервов организма.
1.2. МЕТОДЫ ФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
• Физиология — наука экспериментальная. Знания о функциях и механизмах деятельности организма построены на опытах, проводимых на животных, наблюдениях в клинике, обследованиях здоровых людей в различных экспериментальных условиях. При этом в отношении здорового человека требуются методы, не связанные с повреждениями его тканей и проникновением во внутрь организма — так называемые неинвазивныеметоцы.
В общей форме физиология использует три методических приема исследований: наблюдение или метод «черного ящика», острыйопыт и хронический эксперимент.
Классическими методами исследований ятяжсьметодыудаления и методы раздражения отдельных частей или целых органов, в основном применявшиеся в опытах на животных или во время операций в клинике. Они давали приблизительное представление о функциях удаленных или раздражаемых органов итканей организма. В этом отношении прогрессивным методом исследования целостного организмаявил- ся разработанный И. П. Павловымметодусловныхрефлексов. ,
В современных условиях наиболее распространенными являются электрофизиологические методы, позволяющие регистрировать электрические процессы, не изменяя текущей деятельности изучаемых органов и без повреждения покровных тканей — например, электрокардиография, электромиография, электроэнцефалография (регистрация электрической активности сердца, мышц и мозга). Развитие радиотелеметрии позволяет передавать эти получаемые записи на значительные расстояния, а компьютерные технологии и специальные программы—обеспечиваюттонкий анализ физиологических данных. Использование фотосъемки в инфракрасных лучах (тепловидения) позволяет выявить наиболее горячие или холодные участки тела, наблюдаемые в состоянии покоя или в результате деятельности. С помощью так называемой компьютерной томографии, не вскрывая мозга, можно увидеть морфофункциональные его изменения на различной глубине. Новые данные о работе мозга и отдельных частей тела дает изучен и е магнитных колебаний.
1.3. КРАТКАЯ ИСТОРИЯ ФИЗИОЛОГИИ
Наблюдения за жизнедеятельностью организма производились q незапамятных времен. За 14-15 веков до н. э. в Древнем Египте п ри изготовлении мумий люди хорошо знакомились с внутренними органами человека; В гробнице врача фараона Унаса изображены древние медицинские инструменты. В Древнем Китае только по пульсу удивительно тонко различали до 400 болезней. В IV-Увекедо н. э, там было развито учение о функционально важных точках тела, которое в настоящее время явилось основой для современных разработок рефлексотерапии и иглоукаливания, Су-Джоктерапии, тестирования функционального состояния скелетных мышц спортсмена по величине напряженности электрического поля кожи в биоэлектрически активных точках над ними. Древняя Индия прославилась своими особыми растительными рецептами, воздействием на организм упражнениями йоги и дыхательной гимнастики. В Древней Греции первые представления о функциях мозга и сердца высказывали в IV-V веке до н. э. Гиппократ (460-377 г. до н. э.) и Аристотель (384-322 до н. э.), а в Древнем Риме во 11 веке до н.э.— врач Гален (201-131 г. до н.э.).
Однако, как экспериментальная наука, физиология возникла в XVII веке нашей эры, когда английский врач В. Г арвей открыл круги кровообращения. Вэтотже период французский ученый Р. Декарт ввел понятие рефлекс (отражение), описав путь внешней информации в мозги обратный путь двигательного ответа. Работами гениального русского ученого М. В. Ломоносова и немецкого физика Г. Гельмгольца о трехкомпонентной природе цветного зрения, трактатом чеха Г. Прохазки о функциях нервной системы и наблюдениями итальянца Л. Гальвани о животном электричестве в нервах и мышцах отмеченXVIIIвек. В Х1Хвекеразработаны представления английского физиолога Ч. Шеррингтона об интегративных процессах в нервной системе, изложенные в его известной монографии в 1906 г. Проведены первые исследования утомления итальянцем А. Моссо. Обнаружил изменения постоянных потенциалов кожи при раздражениях у человека И. Р. Тарханов (феномен Тарханова).
В XIX в. работами «отца русской физиологии» И. М. Сеченова (1829-1905) заложены основы развития многих областей физиологии — изучение газов крови, процессов утомления и «активного отдыха», а главное — открытие в 1862 году торможения в центральной нервной системе («Сеченовского торможения») и разработка физиологических оЬнов психических процессов человека, показавших рефлекторную природу поведенческих реакций человека (‘ Рефлексы головного мозга», 1863 г.). Дальнейшая разработка идей И. М. Сеченова шла двумя путями. С одной стороны, изучение тонких механизмов возбуждения и торможения проводилось в Санкт-Петербургском Университете И. Е. Введенским (1852-1922). Им создано представление о физиологической лабильности как скоростной характеристике возбуждения и учение о парабиозе как общей реакции нервно-мышечной ткани на раздражение. В дальнейшем это направление было продолжено его учеником А. А. Ухтомским (1875-1942), который, изучая процессы координации в нервной системе, открыл явление доминанты (господствующего очага возбуждения) и роль в этих процессах усвоения ритма раздражений. С другой стороны, в условиях хронического эксперимента на целостном организме, И. П. Павлов (1849-1936) впервые создал учение об условных рефлексах и разработал новую главу физиологии —физиологию высшей Нервной деятельности. Кроме того, в 1904 г. за свои работы в области пищеварения И. П. Павлов, одним из первых русских ученых, был отмечен Нобелевской премией. Физиологические основы поведения человека, роль сочетанных рефлексов были разработаны В. М. Бехтеревым.
Крупный вклад в развитие физиологии внесли и другие выдающиеся отечественные физиологи: основатель эволюционной физиологии и адаптологии академикЛ. А. Орбели, изучавший условно-рефлекторные влияния коры на внутренние органы акад. К. М. Быков, создатель учения о функциональной системе акад. П. К. Анохин, основатель отечественной электроэнцефалографии—акад. М. Н. Ливанов, разработчик космической физиологии—акад. В. В. Парин, основатель физиологии активности—Н. А. Бернштейн и многие др.
В области физиологии мышечной деятельности следует отметить основателя отечественной физиологии спорта—проф. А. Н. Крестов- никова(1885-1955), написавшего первый учебник по физиологии человека для физкультурных вузов страны (1938) и первую монографию по физиологии спорта (1939), атакже широко известных ученых—проф. Е. К. Жукова, В. С. Фарфеля, Н. В. Зимкина, А. С. Мозжухина и многих др., а среди зарубежных ученых - П.-О. Астранда, А. Хилла, Р. Грани- та, Р. Маргария и др.
2. ОБЩИЕ ЗАКОНОМЕРНОСТИ ФИЗИОЛОГИИ И ЕЕ ОСНОВНЫЕ ПОНЯТИЯ
Живые организмы представляют собой так называемые открытые системы (т. е. не замкнутые в себе, а неразрывно связанные с внешней средой). Они состоят из белков и нуклеиновых кислот и
характеризуются способностью к авторегуляи,ии и самовоспроиз- ведению. Основными свойствами живого организма являются обмен веществ, раздражимость (возбудимость), подвижность, самовоспроизведение (размножение, наследственность) и саморегуляция (поддержание гомеостаза, приспособляемость-адаптивность).
2.1. ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ ВОЗБУДИМЫХ ТКАНЕЙ
Общим свойством всех живых тканей является раздражимость, т. е. способность под влиянием внешних воздействий изменять обмен веществ и энергии. Среди всех живых тканей организма особо выделяют возбудимые ткани (нервную, мышечную и железистую), реакция которых на раздражение связана с воз- никновением специальных форм активности — электрических по* тенциалов и других явлений.
Основными функциональными характеристиками возбудимых тканей являются возбудимость и лабильность.
Возбудимость—свойство возбудимых тканей отвечать на раздражение специфическим процессом возбуждения. Этот процесс включаетэлектрические, ионные, химические и тепловые изменения, атакже специфические проявления: в нервных клетках — импульсы возбуждения, в мышечных—сокращение или напряжение, в железистых — выделение определенных веществ. Он представляет собой переход из состояния физиологического покоя в деятельное состояние. Для нервной и мышечной ткани характерна также способность передавапи> это активное состояние соседним участкам—т.е. проводимость.
Возбудимые ткани характеризуются двумя основными нервными процессами — возбуждением и торможением. Торможение — это активная задержка процесса возбуждения. Взаимодействие этих двух процессов обеспечиваеткоординацию нервной деятельности в целостном организме.
Различают местное (или локальное) возбуждение и распространяющееся. Местное в озбуждение представляет незначительные изменения в поверхностной мембране клеток, а распространяющееся возбуждение связано с передачей всего комплекс! физиологических изменений (импульса возбуждения) вдоль нервной или мышечной ткани. Для измерения возбудимости пользуются определением порога, т. е. минимальной величины раздражения, при которой возникает распространяющееся возбуждение. Величина порога зависит от функционального состояния ткани и от особенностей раздражителя, которым может быть любое изменение внешней среды (электрическое, тепловое, механическое и пр.). Чем выше порог, тем ниже возбудимость и наоборот. Возбудимость может повышаться в процессе выполнения физических упражнений оптимальной длительности и интенсивности (например, под влиянием разминки, в ходе врабатывания) и снижаться при утомлении, развитии перетренированности.
Лабильность — скорость протекания процесса возбуждения в нервной и мышечной ткани (лат. лабилис — подвижный). Понятие лабильности или функциональной подвижности было выдвинуто Н. Е. Введенским в 1892 г. В качестве одной из мер лабильности
Н. Е. Введенский предложил максимальное количество волн возбуждения (электрических потенциалов действия), которое может воспроизводиться тканью в 1 с в соответствии с ритмом раздражения. Лабильность характеризует скоростные свойства ткани. Она может повышаться под влиянием раздражений, тренировки, особенно у спортсменов при развитии качества быстроты.
2.2. НЕРВНАЯ И ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ ФУНКЦИЙ
У простейших одноклеточных животных одна единственная клетка осуществляет разнообразные функции,. Усложнение же деятельности организма в процессе эволюции привело к разделению функций различных клеток—их специализации. Для управления такими сложными многоклеточными системами уже было недостаточно древнего способа — переноса регулирующих жизнедеятельность веществ жидкими средами организма.
Регуляция различных функций у высокоорганизованных животных и человека осуществляется двумя путями: гуморальным (лат. гумор—жидкость) —через кровь, лимфу и тканевую жидкость и нервным.
Возможности гуморальной регуляции функций ограничены тем, что онадействует сравнительно медленной не может обеспечить срочных ответов организма (быстрых движений, мгновенной реакции на экстренные раздражители). Кроме того, гуморальным путем происходит широкое вовлечение различных органов и тканей в реакцию (по принципу «Всем, всем, всем!»). В отличие от этого, с помощью нервной системы возможно быстрое и точное управление различными отделами целостного организма, доставка сообщений точному адресату. Оба эти механизма тесно свя- заны, однако ведущую роль в регуляции функций играет нервная система.
В регуляции функционального состояния органов и тканей принимают участие особые вещества—нейропептиды, выделяемые железой внутренней секреции гипофизом и нервными клетками спинного и головного мозга. В настоящее время известно околосотн ни подобных веществ, которые являются осколками белков и, не вызывая сами возбуждения клеток, могут заметно изменять их функциональное состояние. Они влияют на сон, процессы обучения и памяти, на мышечный тонус (в частности, на познуюасимметрию), вызывают обездвижение или обширные судороги мышц, обладают обезболивающим и наркотическим эффектом. Оказалось, что концентрация нейропептидов в плазме крови у спортсменов: может превышать средний уровень у нетренированных лиц в 6-8 раз, повышая эффективность соревновательной деятельности. В условиях чрезмерных тренировочных занятий происходит истощение нейропептидов и срыв адаптации спортсмена к физическим нагрузкам.
2.3. РЕФЛЕКТОРНЫЙ МЕХАНИЗМ ДЕЯТЕЛЬНОСТИ НЕРВНОЙ СИСТЕМЫ
В деятельности нервной системы основным является рефлекторный механизм. Рефлекс — это ответная реакция организма на внешнее раздражение, осуществляемая с участием нервной системы.
Нервный путь рефлекса называется рефлекторной дугой; В состав рефлекторной дуги входят: 1) воспринимающее образоваг ние — рецептор, 2) чувствительный или афферентный нейрон,связывающий рецептор с нервными центрами, 3) промежуточные (или вставочные) нейроны нервных центров, 4) эфферентный нейрон; связывающий нервные центры с периферией, 5) рабочий орган, отвечающий на раздражение — мышца или железа.
Наиболее простые рефлекторные дуги включают всего две нервные клетки, однако множество рефлекторных дуг в организме состоят из значительного количества разнообразных нейронов, расположенных в различных отделах центральной нервной системы. Выполняя ответные реакции, нервные центры посылают команды к рабочему органу (например, скелетной мышце) через эфферентные пути, которые выполняют роль так называемых каналов прямой связи. В свою очередь, в ходе осуществления рефлекторного ответа или после него рецепторы, находящиеся в рабочем органе, и другие рецепторы тела посылают в центральную нервную систему информацию о результате действия. Афферентные пути этих сообщений— канал ы обратной связи. Полученная информация используется нервными центрами для управления дальнейшимидействиями, т. е. прекращением рефлекторной реакции, ее продолжением или изменением. Следовательно, основу целостной рефлекторной деятельности составляет не отдельная рефлекторная дуга, а замкнутое рефлекторное кольцо, образованное прямыми и обратными связями нервных центров с периферией.
2.4. ГОМЕОСТАЗ
Внутренняя среда организма, в которой живут все его клетки, — это кровь, лимфа, межтканевая жидкость. Ее характеризует относительное постоянство — гомеостаз различных показателей, так как любые ее изменения приводят к нарушению функций клеток и тканей организма, особенно высокоспециализированных клеток центральной нервной системы. Ктаким постоянным показателям гомеостаза относятся температура внутренних отделов тела, сохраняемая в пределах 36-37° С, кислотно-основное равновесие крови, характеризуемое величиной pH = 7.4-7.35, осмотическое давление крови (7.6-7.8 атм.), концентрация гемоглобина в крови — 130-160 г • л'1 идр.
Гомеостаз представляет собой не статическое явление, а динамическое равновесие. Способность сохранять гомеостаз в условиях постоянного обмена веществ и значительных колебаний факторов внешней среды обеспечивается комплексом регуляторных функций организма. Эти регуляторные процессы поддержания динамического равновесия получили название гомеокинеза.
Степень сдвига показателей гомеостаза при существенных колебаниях условий внешней среды или при тяжелой работе у большинства людей очень невелика. Например, длительное изменение pH крови всего на 0.1-0.2 может привести к смертельному исходу. Однако, в общей популяции имеются отдельные индивиды, обладающие способностью переносить гораздо большие сдвиги показателей внутренней среды. У высококвалифицированных спортсме- нов-бегунов в результате большого поступления молочной кислоты из скелетных мышц в кровь во время бега на средние и длинные дистанции pH крови может снижаться до величин 7.0 и даже 6.9. Лишь несколько человек в мире оказались способными подняться на высоту порядка 8800 м над уровнем моря (на вершину Эвереста) без кислородного прибора, т. е. существовать и двигаться в условиях крайнего недостатка кислорода в воздухе и, соответственно, в тканях организма. Эта способность определяется врожденными особенностями человека — так называемой его генетической нормой реакции, которая даже для достаточно постоянных функциональных показателей организма имеет широкие индивидуальные различия.
2.5. ВОЗНИКНОВЕНИЕ ВОЗБУЖДЕНИЯ И ЕГО ПРОВЕДЕНИЕ
>
2.5.1. МЕМБРАННЫЕ ПОТЕНЦИАЛЫ
Мембрана клетки состоит из двойного слоя молекул липидов, повернутых «головками» наружу, а «хвостами» другкдругу. Между ними свободно плавают глыбы белковых молекул. Некоторые из них прони- зывают мембрану насквозь. Вчаститакихбелковимеютсяособые п о- ры или ионные каналы, через которые могут проходить ионы, участвующие в образовании мембранных потенциалов (рис. 1 -А).
В возникновении и поддержании мембранного потенциала покоя основную роль играют два специальных белка. Один из них выпол- няетрольособогонатрий— калиевого насоса, которыйза счетэнергиИ АТФ активно перекачивает натрий из клетки наружу, а калий внутрь клетки. В результате концентрация ионов калия становится внутри клетки выше, чем в омывающей клетку жидкости, а ионов натрия—выше снаружи.
@Na+ Рис. 1. Мембрана возбудимых клеток в покое (А) и при возбуждении (Б). (По: Б. Альберте U др., 1986) а — двойной слой липидов, б — белки мембраны< На А: каналы «утечки калия» (1), «натрий-калиевыи насос» (2) и закрытый в покое натриевый канал (3). На Б: открытый при возбуждении натриевый канал (1), вхождение ионов натрия в клетку и смена зарядов на наружной и внутренней стороне мембраны. |
Второй белок служит каналом утечки калия, через который ионы калия в силу диффузии стремятся выйти из клетки, где они содержатся в избытке. Ионы калия, выходя из клетки, созда- ют л оложительный заряд на наружной поверхности мембраны. В результате внутренняя поверхность мембраны оказывается заряженной отрицательно по отношению к наружной. Таким образом, мембрана в состоянии покоя поляризована, т. е. имеется определенная разность потенциалов по обе стороны мембраны, называемая потенциалом покоя. Она равна для нейрона примерно минус 70 м В, для мышечного волокна — минус 90 мВ. Измеряют мембранный потенциал покоя, вводя тонкий кончик микроэлектрода внутрь клетки, а второй электрод помещая в окружающую жидкость. В момент прокола мембраны и вхождения микроэлектрода внутрь клетки на экране осциллографа наблюдаютсмещение луча, пропорциональное величине потенциала покоя.
В основе возбуждения нервных и мышечных юхеток лежит повышение проницаемости мембраны для ионов натрия — открывание натриевых каналов. Внешнее раздражение вызывает перемещение заряженных частиц внутри мембраны и уменьшение исходной разности потенциалов по обе стороны или деполяризацию мембраны. Небольшие величины деполяризации приводят к открыванию части натриевых каналов и незначительному проникновению натрия внутрь клетки. Эти реакции являются подпороговыми и вы- зываютлишьместные (локальные) изменения.
При увеличении раздражения изменения мембранного потенциала достигают порога возбудимости или критического уровня деполяризации —около 20 мВ, при этом величина потенциала покоя снижается примерно до минус 50 мВ. В результате открывается значительная часть натриевых каналов. Происходит лавинообразное вхождение ионов натрия внутрь клетки, вызывающее резкое изменение мембранного потенциала, которое регистрируется в виде потенциала действия. Внутренняя сторона мембраны в месте возбуждения оказывается заряженной положительно, а внешняя — отрицательно (рис. 1 -Б).
Весь этот процесс чрезвычайно кратковременный. Он занимает всего около 1 -2 мс, после чего ворота натриевых каналов закрываются. Кэтомумоменту достигает большой величины медленно нараставшая при возбуждении проницаемость для ионов калия. Выходящие из клетки ионы калия вызывают быстрое снижение потенциала действия. Однако окончательное восстановление исходного заряда продолжается еще некоторое время. В связи с этим в потенциале действия различают кратковременную высоковольтную часть — пик (или с п а й к) и длительные малые колебания — следовые потенциалы. Потенциалы действия мотонейронов имеют амплитуду пика около 100 мВ и длительность около 1.5 мс, в скелетных мышцах—амплитуда потенциаладействия 120-130мВ,адлительность2-3 мс.
В процессе восстановления после потенциаладействия работа натрий-калиевого насоса обеспечивает «откачку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, т. е. возвращение к исходной асимметрии их концентрации по обе стороны мембраны. На работу этого механизма тратится около 70% всей необходимой клетке энергии.
Возникновение возбуждения (потенциаладействия) возможно лишь при сохранении достаточного количества ионов натрия в окружающей клетку среде. Большие потери натрия организмом (напри* мер, с потом при д лительной мышечной работе в условиях высокой температуры воздуха) могут нарушить нормальную деятельность нервных и мышечных клеток, снизив работоспособность человека. В условиях кислородного голодания тканей (например, при наличии большого кислородного долга во время мышечной работы) процесс возбуждения также нарушается из-за поражения (инактивации) механизма вхождения в клетку ионов натрия, и клетка становится невозбудимой. На процесс инактивации натриевого механизма влияет концентрация ионов Са2+ в крови. При повышении содержания Са2+ снижается клеточная возбудимость, а при дефиците Са2+ возбудимость повышается, и появляются непроизвольные мышечные судорога.
2.5.2. ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ
Потенциалыдействия (импульсы возбуждения) обладают способностью распространяться вдоль по нервным и мышечным волокнам.
В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5-6 раз превышает пороговую величину деполяризации. Это обеспечивает высокую скорость и надежность проведения.
Между зоной возбуждения (имеющей на поверхности волокна отрицательный заряд и на внутренней стороне мембраны — положительный) и соседним невозбужденным участком мембраны нервного волокна (с обратным соотношением зарядов) возникают электрические токи—так называемые местные токи. В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемости и появление потенциаладействия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т. д. Таким образом с помощью мест- пых токов происходит распространение возбуждения на соседние у част - ки нервного волокна, т. е. проведение нервного импульса. По мере проведения амплитуда потенциаладействия не уменьшается, т. е. возбуждение не затухает даже при большой длине нерва.
В процессе эволюции с переходом отбезмякотных нервных волокон к мякотным произошло существенное повышение скорости проведения нервного импул ьса. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает последовательно каждый соседний участок нерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить тол ько в оголенных участках мембраны—перехватах Ранвье, лишенных этой оболочки. При проведении нервного импульса возбуждение перескакивает от одного перехвата к другому и может охватыватьдаже несколько перехватов. Такое проведение получило название сальтаторного(лгт. saltus—прыжок). При этом повышается не только скорость, но и экономичность проведения. Возбуждение захватывает не всю поверхность мембраны волокна, алишьнебольшуюее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.
Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприо- цептивные афферентные нервные волокна—до 100 м-с-1. В тонких симпатических нервных волокнах (особенно в немиелинизирован- ных волокнах) скорость проведения мала—порядка 0.5 — 15 м-с1.
Во время развития потенциала действия мембрана полностью теряет возбудимость Это состояние называют полной невозбудимос- тьюили абсолютной рефрактерностью. Занимследует относительная рефрактерность, когда потенциал действия х можетвозникатьлишьприоченьсильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.
3. НЕРВНАЯ СИСТЕМА
Нервную систему подразделяют на периферическую (нервные волокна и узлы) и центральную. К центральной нервной системе (ЦНС) относят спинной и головной мозг.
3.1. ОСНОВНЫЕ ФУНКЦИИ ЦНС
Все важнейшие поведенческие реакции человека осуществляются с помощью ЦНС.
Основными функциями ЦНС являются:
• объединение всех частей организма в единое целое и их регуляция;
• управление состоянием и поведением организма в соответствии с условиями внешней среды и его потребностями.
У высших животных и человека ведущим отделом ЦНСявляется кора больших полушарий. Она управляет наиболее сложными функциями в жизнедеятельности Человека—психическими процессами (сознание, мышление, речь, память и др.).
Основными методами изучения функций ЦНС являются методы удаления и раздражения (в клинике и на животных), регистрации электрических явлений, метод условных рефлексов.
Продолжают разрабатываться новые методы изучения ЦНС: с помощью так называемой компьютерной томографии можно уви-* деть морфофункциональные изменения мозга на различной его глубине; фотосъемки в инфракрасныхлучах (тепловидение) позволяют обнаружить наиболее «горячие» точки мозга; новые данные о работе мозга дает изучение его магнитных колебаний.
3.2. ОСНОВНЫЕ ФУНКЦИИ И ВЗАИМОДЕЙСТВИЯ НЕЙРОНОВ
Основными структурными элементами нервной системы являются нервные клетки или нейроны.
3.2.1. ОСНОВНЫЕ ФУНКЦИИ НЕЙРОНОВ
Через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения.
Таким образом, основными функциями нейронов являются: восприятие внешних раздражений — рецепторная функция, их переработка — интегративная функция и передача нервных влияний на другие нейроны или различные рабочие органы — эффекторная функция. В теле нервной клетки, или с о- м е, происходят основные процессы переработки информации. Многочисленные древовидно разветвленные отростки — де н д - р и т ы (греч. дендрон — дерево) служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток — аксон (греч. аксис — ось), который передает нервные импульсы дальше — другой нервной клетке или рабочему органу (мышце, железе). Особенно высокой возбудимостью обладает начальная часть аксона и расширение в месте его выхода из тела клетки — аксонный холмик нейрона. Именно в этом сегменте клетки возникает нервный импульс.
3.2.2. ТИПЫ НЕЙРОНОВ
Нейроны подразделяются на три основных типа: афферентные, эфферентные и промежуточные. Афферентные нейроны (чувствительные, или центростремительные) передают информацию от рецепторов в ЦНС. Тела этих нейронов расположены вне ЦНС—в спинномозговых узлах и в узлах черепных нервов. Афферентные нейроны имеют длинный отросток — дендрит, который контактирует на периферии с воспринимающим образованием—рецептором или сам образует рецептор, а также второй отросток—аксон, входящий через задние рога в спинной мозг.
Дата добавления: 2015-05-21; просмотров: 1020;