Уравнение Бернулли и выводы из него

h2
h1
S2
S2
S1
S1

Рис.4.3

Выделим в трубке тока (рис.4.3) элемент, ограниченный плоскими сечениями S1 и S2. Пусть скорости движения жидкости в этих сечениях равны v1 и v2, а давления р1 и р2 соответственно. За время Dt выделенный элемент перемещается в направлении, указанном стрелкой, так, что сечения S1 и S2 cмещаются на расстояния Dl1 = v1Dt и Dl2 = v2 Dt соответственно, занимая новые положения и . При перемещении изменяется кинетическая и потенциальная энергии выделенного элемента. По закону сохранения энергии величина этого изменения определяется

работой сил давления f1 = p1S1 и f2 = p2S2, которые действуют на плоскости S1 и S2. Как видно из рис., часть элемента между сечениями и S2 остается неподвижной так, что изменение положения выделенного элемента сводится к перемещению отрезка, ограниченного сечениями S1 и в новое положение между плоскостями S2 и . Пусть плотность жидкости в сечении S1 равна r1, а в сечении S2 - r2. Масса отрезка между сечениями S1 и равна m1 = r1v1S1Dt, тогда как масса между S2 и равна m2 = r2v2S2Dt; поэтому кинетическая и потенциальная энергии массы m1 равны:

= . (4-8)

Аналогично для массы m2:

= (4-9)

где h1 и h2 - высоты центров тяжести первого и второго элементов относительно выбранного уровня отсчета потенциальной энергии.

На основании закона сохранения механической энергии можно записать:

= . ( 4-10)

Работа силы f2 взята со знаком минус потому, что направление силы и направление перемещения противоположны друг другу.

Подставляя в уравнение (4-10) значения кинетических и потенциальных энергий (4-8) и (4-9), получаем:

= , (4-11)

откуда после сокращения на величину Dt (с учетом того, что v1S1 =v2 S2) следует:

= ,(4-12)

или в общем виде:

+ р = const. (4-13)

Выражения (4-12) и (4-13) представляют различные формы записи уравнения Бернулли, имеющего ряд важных следствий практического характера.Если движение жидкости или газа происходит на постоянной высоте, то уравнение (4-13) упрощается: р = const, или = .(4-14 )

Из этого уравнения следует, что давление внутри трубки тока зависит от скорости: там, где скорость меньше, давление больше, при увеличении скорости потокадавление в нем уменьшается. Это утверждение называют принципом Бернулли.

Приложения уравнения Бернулли:подъемной силы крыла самолета, гидротрубина, гидротаран, водоструйный насос, аэрация почвы и т. д.








Дата добавления: 2015-04-15; просмотров: 1056;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.