Сложение гармонических колебаний.
Наиболее простым примером является сложение двух одинаково направленных гармонических колебаний одинаковой частоты, каждое из которые можно представить в аналитическом виде x1(t) = A1sin (wt + j1) и x2(t) = A2 sin (wt + j2) и векторном виде (рис.5.3).
Поскольку оба слагаемых вращаются с одинаковой частотой, суммарный вектор также вращается с этой же частотой, т.е. результатом суммы x1(t) и x2(t) будет гармоническое колебание той же частоты, амплитуда которого находится как диагональ параллелограмма АS, построенного на векторах А1 и А2:
; (5-2)
разность j2-j1 определяется из рис.5.3. Величина начальной фазы j результирующего колебания определяется из величины тангенса этого угла:
,
где АSy и АSх представляют собой проекции амплитуды суммарного колебания на оси Y и X соответственно. Как следует из рисунка, значение АSх равно сумме проекций на ось Х каждого из слагаемых колебаний:
АSх = Х2 + Х1 = А2 cos j2 + A1 cos j1 . (5-3)
Аналогичное выражение может быть получено и для суммарной проекции на ось Y ( для простоты Y - проекции на рис.5.3 не показаны):
АS y = Y2 + Y1 = A2 sin j2 + A1 sin j1 . (5-4)
Тогда
. (5-5)
Таким образом, определены основные параметры суммарного колебания: амплитуда, частота и начальная фаза. Несколько сложнее найти сумму двух колебаний, если их частоты отличаются друг от друга. Практически интересным является случай, когда это различие незначительно, т.е. w1= w0 + W и w2 = w0 - W, причем W<< w0 . Пусть для простоты амплитуды обоих колебаний и их начальные фазы одинаковы. Тогда x1(t) = Asin(w0 + W)t и x2(t) = Asin(w0 - W)t . Суммируя эти выражения, получим
x1(t)+ x2(t) = A{sin(w0 + W)t + sin(w0 - W)t} = [2AcosWt] sin w0t, (5-6)
Рис.5.4 | где величину, стоящую в квадратных скобках, можно рассматривать как медленно меняющуюся амплитуду. Результат суммы таких колебаний, представленный на рис.5.4, называется биениями. Если амплитуды слагаемых колебаний неодинаковы, то картина наблюдающихся биений отличается от | |
Рис.5.5 | предыдущей, т.к теперь суммарная амплитуда изменяется от значения А1+А2 до минимума А1-А2. Важно отметить, что в обоих случаях суммарное колебание не является гармоническим, хотя оно и записывается в виде произведения гармонических функций, т.к. его амплитуда не остается постоянной и медленно изменяется с течением времени (рис.5.5). | |
Дата добавления: 2015-04-15; просмотров: 946;