Взаимодействие тел в эфирном пространстве обусловливает им равное и противоположное противодействие. 6 страница

Изменение напряженности собственного гравиполя грузика g' обусловливает возникновение подъемной силы, приводящей к уменьшению веса тела ∆Р при движении с постоянным ускорением:

∆Р = Р – Fо = mg – mg' = mv2/R – m(v + аt)2/R. (3.73)

При равенстве напряженности внешнего гравиполя g и напряженности гравиполя грузика g' вес тела становится как бы равным 0.

Отмечу, что ускорение g возникает не только при движении с ускорением, но и при всяком движении с постоянной скоростью по поверхности Земли, а это означает, что отвес принципиально никогда не будет находиться в вертикальном положении в аппаратах, движущихся по поверхности с постоянной скоростью. Эксперимент, подтверждающий это положение легко поставить в горизонтально летящем самолете.

Таким образом, в современной теории отсутствует взаимосвязь ускорения а с изменением напряженности собственного гравиполя движущихся тел g', что приводит к некорректному описанию механизма их движения и к непониманию сути движения тел. Но поскольку существует прямая взаимосвязь сил инерции Fо и тяготения Р, возникает вопрос: а не являются ли силы инерции и силы тяготения одной силой? И действительно ли существует в природе разделение масс на инертные и гравитационные? Основанием для разделения массы на инертную и гравитационную послужили факты падения различных тел с одинаковым ускорением и одинакового периода колебания различных тел, т.е. одинакового воздействия тел друг на друга при взаимном притяжении и возникновение таких же сил при вращении тела по окружности на нити.

Проявление одинаковых последствий при «различных» формах взаимодействия гравитационных и инерциальных, в которых участвовали массы и силы, позволили И. Ньютону сделать вывод, что в этих взаимодействиях участвуют различные виды не связанных между собой различных масс: инерциальных и гравитационных. Однако конечным итогом этих взаимодействий было появление сил, и им было сделано предположение (постулат) о том, что проявление силы без участия масс получить невозможно. Физи­ческое различие двух видов масс через силу прямо сле­дует из следующего пояснения:

«Под врожденной силой я разумею единственно только силу инерции. Она неиз­менна. Тяжесть же при удалении от Земли уменьшает­ся» [5].

Так появилось обоснование для искусственного разделения свойства «масса» на два вымышленных понятия: «масса инерциальная» и «масса гравитационная».

Рассмотрим логику и обоснование разделения.

Сила F может быть получена из закона притяжения тела массой М' и Земли массой М:

F = М'МG/R2 = M'g, (3.74)

где G – гравитационная «постоянная»; R – расстояние между центрами тел; g – напряженность внешнего гра­витационного поля.

g = MG/R2. (3.75)

Поскольку формула (3.74) не имеет в своем составе параметра движения, но включает гравитационную «по­стоянную» G и описывает чисто гравитационное притя­жение масс, делается вывод, что участвующие во взаи­модействии массы (3.74) являются гравитационными.

С другой стороны, сила F° получается при вращатель­ном движении массы по инерции вокруг центра и опи­сывается уравнением:

F° = М'v2/R, (3.76)

где v - скорость движения тела по окружности.

Отмечу, что к уравнению (3.76) относят как вращение тела нити, так и вращение тела на орбите. Но это разные физические процессы, хотя они и описываются одной формулой (аналогией могут служить, например, морская волна и радиоволна процессы разные, а математический аппарат один). Вращающееся на нити тело удерживается центростремительным ускорением, а сущностью орбитальной скорости v является уравнивание телом напряженности своего гравиполя с гравиполем Земли, которое внешне отображается как первая космическая скорость.

Но продолжим, по­скольку уравнение (3.76) не содержит гравитационных параметров, то и масса движущегося тела была посту­лирована Ньютоном инерциальной, а по массе и сила Fо, задейство­ванная в уравнении (3.76), тоже становится инерциаль­ной.

А так как в формулы (3.74) и (3.76) другие параметры не входят и отсутствуют (по крайней мере, отсутствова­ли в те времена) иные способы получения силы, то предположили (постулировали), что сила возникает только в случае взаимодействия масс.

Ньютону было известно, что формула (3.76) описыва­ет результаты воздействия центробежной силы, возни­кающей при вращательном движении тела с ускорением а, равном:

а = v2/R (3.77)

Если теперь ускорение а приравнять g (a = g), то величины сил, получаемых по формулам (3.74) и (3.76), окажутся равными. А это уже может являться логиче­ским основанием для предположения равенства инертной и гравитационной масс. Это равенство и получило название принципа эквивалентности.

К тому же еще во времена Ньютона появилось подтверждение этому принципу, как следствие прирав­нивания друг к другу правых частей уравнений (3.74) и (3.76):

МG = Rv2, (3.78)

и в левой части (3.78) получаем «чисто» гравитационную составляющую.

Инвариант (3.78) находится и при переносе из правой части в левую знаменателя в формуле (3.75):

R2g = MG. (3.79)

Инварианты (3.78) и (3.79), по-видимому, были известны во времена Ньютона, левую часть (3.79) он ис­пользовал для определения g в области Луны. Но не бы­ли известны способы образования данного инварианта с использованием других параметров, и потому он послу­жил дополнительным аргументом разделения масс на инертную и гравитационную.

Однако равенствами (3.78) и (3.79) не ограничиваются способы получения данного инварианта. Оказалось, что с использованием метода КФР ряд этого инварианта может включать любые физические параметры и обра­зовывать их бесчисленное количество сочетаний:

const – R2vω= v2g/ω2 = FG/g = FR2/M = v4/g… и т.д. (3.80)

Особенность данных инвариантов, как уже говорилось, заключается в том, что их попарное приравнива­ние друг другу обусловливает возможность получения формул относительно любого параметра. В нашем слу­чае искомым параметром является сила F. Приравняем из (3.80) инварианты с параметром F другим инвариан­там и получим формулы с параметром М:

F = Mvω = MRω2 = Mv2/R2ω = ..., (3.81)

F = Mv2ω2/G = Mgv2/R2ω2 =... (3,82)

Можно ли, имея эти формулы, сказать, что в уравне­ниях (3.81) масса является строго инерциальной, а в уравнениях (3.82) только гравитационной? Вряд ли. Если о системе (3.81) с какой-то степенью неуверен­ности и можно полагать, что она инерциальная, то сис­тема уравнений (3.82) содержит и инерциальные и гра­витационные параметры. А что делать с системой уравнений, включающих силу F при полном отсутствии массы М?

F = v4/G = Rv2g/G = R2g2/G = v2g2/Gω2 = ... (3.83)

И хотя по Ньютону таких уравнений ожидать не сле­дует, они существуют и доказывают, что сила есть свой­ство тел и может проявляться при рассмотрении инвари­антной взаимосвязи любых иных свойств.

Что касается массы, то она может быть получена в различных сочетаниях параметров и инерциальных и гравитационных, даже из того небольшого набора инва­риантов, которые образованы выше:

М = v2g/Gω2 = F/vω = RF/v2 = R2g/G = W/Rg = gF/ω2v2 =...

Естественно, что эти зависимости свойств, а их коли­честве бесчисленно, получаются только потому, что они завязаны в одну систему. И в этой системе невозможно не только определить, но даже предположить существование, какого бы то ни было разделения массы на инерциальную, и гравитационную. А поскольку получается, что деление массы на инерциальную и гравитационную — формально-логическая ошибка, не адекватная приро­де, то существование так называемых инерциальных систем отсчета становится не просто сомнительным, а невозможным.

Полученные инварианты и уравнения можно количе­ственно проверить, подставив вместо индексов в (3.73) – (3.82)количественную величину, например, пара­метров Земли.

 

3.7. Абсолютность «относительного»

движения

 

Существование в классической механике неявных по­стулатов о самонеподвижности тел, инертного веще­ственного пространства и отсутствия взаимодейст­вия тел с пространством привело к тому, что механическое движение тел, их перемещение в пространстве, оказалось невозможно привязать и к эфиру, и к пространству, поскольку движущиеся тела не взаи­модействовали с ними и оставались тождественными своему состоянию в покое. Последнее препятствовало возможности определения экспериментальными спосо­бами состояния покоя или равномерного прямолинейно­го движения приборами, находящимися внутри движу­щегося тела. Кажущаяся невозможность получения информации о движении привела к тому, что всякое движение тела по инерции, т.е. равномер­ное прямолинейное движение без взаимодействия, было объявлено относительным(кроме скорости света постулируемойабсолютной).

Представление о невозможности обнаружения движе­ния с постоянной скоростью отсутствовало у Аристоте­ля, было впервые выдвинуто Галилеем и аргументиро­валось следующим образом:

«Заключите себя с каким-нибудь приятелем в зале под палубой какого-нибудь большого корабля... и заставьте привести корабль в движение, с какой угодно быстротой. И вот (если движение будет равномерным) вы не заме­тите ни малейшей перемены во всех явлениях и ни по одному из них не в состоянии будете судить, - движется корабль или стоит на месте..., прыгая, вы будете проходить по полу те же самые пространства, как при покое корабля..., капельки из подвешенной к потолку кружки будут падать вертикально, и ни одна из них не упадет ближе по направлению к корме...; мухи будут продол­жать свои полеты безразлично во все стороны и проч.» [93].

Эта основанная на механистическом понимании дви­жения аргументация, постулирующаявозможность движения без взаимодействия, была полностью воспри­нята Ньютоном, послужила основой для формирования содержания закона инерции и до сих пор разделяется физиками.

Развивая аргументацию Галилея, Ньютон в своих «Началах...» так сформулировал со­держание инерции [5]: «Врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предостав­лено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения».

Попробую показать физическую и логическую проти­воречивость данной формулировки, а также отсутствие в ней определения физической сущности силы инерции. Суть этой формулировки заключается в словах: «удер­живает свое состояние...»

Но «удерживать свое состояние покоя или равномер­ного прямолинейного движения» по механике возможно только в том случае, когда тело не «предоставлено са­мому себе», а находится среди «истинно неподвижных» или «истинно подвижных» тел, т.е. передвигается мимо них или испытывает на себе их воздействие. А так как у Ньютона нет объективных свидетельств о состоянии движения тел, то приходится, указывая пальцем, опре­делять, какие тела в пространстве «истинно покоящие­ся», а какие движущиеся относительно «истинно покоя­щихся». И сам Ньютон [5] сетует на то, что и в этом конкретном случае, когда тела перед глазами, не исклю­чена ошибка в определении движения тела или его по­коя. Тем более она возможна, когда «тело предоставлено самому себе», и только опять же мысленно мы можем представлять, что оно «предоставлено самому себе». Но такое мысленное представление еще не означает, что те­ло находится само по себе и для себя в состоянии покоя или равномерного и прямолинейного движения, по­скольку это мысленное представление не есть доставка этого же тела из места, подверженного воздействию гравиполя, в место, где гравиполе отсутствует, ну как, например, груза на паровозе. И мы не можем, как для груза, заранее сказать, что это тело после такого пере­мещения останется тождественным само себе.

Мысленно же, вслед за Ньютоном, и до сего времени предполагается, что, совершив телепортацию из грави­поля во вне гравиполя, тело оста­нется само собой, чтобы демонстрировать нам прямоли­нейное (опять же мысленное) и равномерное (и снова мысленное) движение, которое по Ньютону невозможно обнаружить даже мысленно.

В этих мысленных операциях как-то забывается, что свойство «напряженность гравитационного поля» при­суще не только внешнему пространству, но и самому телу, что оно такое же врожденное свойство мате­рии, как и все остальные свойства, и без него простран­ство тела просто не существует. Что внешнее гравиполе такой же атрибут тела, как и его собственное грави­поле, и по этой причине исчезновение внешнего гравипо­ля равносильно исчезновению заключенного в нем тела. А посему все рассуждения, включая математические, о движении тела вдали от гравитационного поля, как и от гравитирующих масс, которыми охотно и часто балуют­ся физики, есть фикция, игра воображения, не предлагающая никакого механизма объяснения инерции.

Покажу невозможность существования пробного тела вне гравиполя на примере подъема его с поверхности Земли и с перенесением на бесконечное расстояние R → ∞, на котором напряженность внешнего гравиполя стре­мится к g → 0. Эта зависимость описывается инвариан­том (3.78):

R2g – const,

и отсюда при

R →∞, g → 0.

С возрастанием расстояния между гравитирующим телом и пробным напряженность внешнего гравиполя уменьшается и на бесконечности обращается в 0, что и требовалось доказать для подтверждения невозможности отсутствия гравиполя по механике Ньютона.

Аналогичные доказательства часто фигурируют, есте­ственно математически более насыщенные, в теоретиче­ской физике. Однако они фигурируют как отдельные самостоятельные уравнения или группы уравнений, не связанные с другими свойствами систем, которые они опи­сывают. Следствием является одностороннее понимание результатов доказательства. КФР все свойства связывает системно и, потому изменение одного свойства, позво­ляет определить, как это изменение отразится на других свойствах. Например, на массе т тела. Расстояние R свя­зано с массой т инвариантом

Rm2 – const,

и при

R → ∞, т → 0,

т.е. вместе с возрастанием расстояния от Земли до пробного тела, масса последнего будет уменьшаться и при R = ∞ станет т = 0. Таким образом, масса пробного тела, а вместе с ним и само тело, исчезает на бесконечности. Следова­тельно, формализованная система зависимости между параметрами взаимодействующих тел приводит к тому же выводу, к которому привела диалектика качествен­ного анализа.

Все эти рассуждения потребовались для того, чтобы показать, что свойство инерции, понимаемое в механике как движение без взаимодействия, есть логический про­счет, ибо уже сама формулировка, включающая поня­тие «способность сопротивления», предполагает нали­чие некоторого взаимодействия с пространством, какого-то механизма зацепления или удержания, посред­ством которого и происходит противодействие, некое «стремление» к сохранению телом своего состояния. И до тех пор, пока этот механизм не будет найден и объяс­нен, представление об инерции будет оставаться пута­ным, неконкретным, туманным, и никакая формулиров­ка закона инерции не будет адекватна его природному аналогу.

Само представление о возможности прямолинейного движения возникло как следствие экстраполяции на­блюдаемого иногда в природе, относительно короткого, вызываемого искусственно, прямолинейного движения тел, на область вымышленного пустого пространства.

Представление о равномерном прямолинейном дви­жении предполагает возможность движения без дви­жущего тела и существование независимых свойств движения. Оно придало скорости статус самостоя­тельного свойства, не связанного с ускорением и не за­висящего от него, а ускорению — возможность исче­зать при равномерном движении.

Естественное, прямолинейное равномерное движение в природе отсутствует. Это является следствием того, что все пространство пронизано гравитацион­ным излучением, не существует вне этого излучения и живет этим излучением. Тела же, движущиеся в гра­витационном пространстве под его воздействием, все­гда изменяют траекторию своего движения и потому принципиально не могут двигаться прямолинейно и рав­номерно. Именно это обстоятельство потребовало уда­ления движущегося по инерции без взаимодействия тела из гравитационного поля. Последнее же было возможно опять-таки только при вольном допущении (постулате), что тела не взаимодействуют с гравиполем, и по этой причине каче­ственно не меняются при удалении из него.

Вопрос об относительности движения с постоянной скоростью как о движении без взаимодействия мог воз­никнуть только при механистическом подходе к объяс­нению свойств и зависимостей природы. Этот вопрос предполагает (постулирует) существование независимых свойств, от­сутствие взаимодействия тела с пространством, как в статике, так и в динамике, а, следовательно, самото­ждественность тела в состоянии относительного по­коя и движения, возможность прямолинейного движения, исчезновения гравитационного поля и неизменность тела в отсутствии гравитационного поля. Все эти по­сылки — прямое следствие экстраполяции выводов, сде­ланных на борту движущегося равномерно большого корабля.

В соответствии с принципами диалектического мате­риализма качественные изменения играют определяю­щую роль в понимании процессов взаимодействия. В природе нет не взаимодействующих систем, и всякое движение есть следствие некоего взаимодействия. Поэтому тело, по­коящееся на поверхности другого тела (например, в за­крытой тележке на поверхности Земли), имеет одну форму взаимодействия с ней, одно количество само­движения, одно качественное состояние. То же самое тело, движущееся с постоянной скоростью относи­тельно Земли, имеет другую форму взаимодействия, другое количество движения и иное качественное со­стояние. Оно не тождественно само себе. Все это вы­текает из диалектики. Однако данные диалектические рассуждения ничего не значат для физиков, если за ни­ми не будет стоять предложение конкретного экспери­мента, а лучше нескольких экспериментов, переводящих полуабстрактные, качественные, логически последова­тельные рассуждения в сухую эмпирику экспериментов. Позволяющих превратить качественную систематику в количественные сравнения достигнутых в опыте изме­нений показателей параметров тел в состоянии покоя и прямолинейного движения с постоянной скоростью.

Надо отметить, что именно абсолютная уверенность физиков в невозможности обнаружения равномерного движения тела приборами, находящимися внутри него, и стала причиной того, что такие эксперименты не проводились, ибо и без них теоретически ясно, что при­боры информации о движении не принесут. В результате этой уверенности три столетия никто не удосужился повторить экспе­рименты Галилея с использованием даже не капель воды и летающих мух (хотя и без экспериментов понятно, что в равномерно движущемся теле ни одна капля с потолка не попадет в то место, в которое она попадает в непод­вижном), а хотя бы гироскопа Фесселя или обыкновен­ного маятника, не говоря уже о более точных приборах.

Гироскоп Фесселя (рис. 39) представляет собой ротор 1, укрепленный на оси 2, которая свободно ставится на острие стойки 3. На противоположной от ротора стороне оси 2 устанавливается противовес 4, и ось может гори­зонтально вращаться. Когда ротор гироскопа раскручи­вается до стандартных оборотов, к оси подвешивают не­большой перегрузок 5, и под его воздействием гироскоп начинает прецессировать.

При установившейся горизонталь­ной прецессии практически не будет наблюдаться нутации. Если теперь использовать этот гироскоп в тележке (ну чем не корабль Галилея), а тележку двигать с постоянной скоро­стью, то уже при равномерной скорости в несколько десятков сантиметров можно будет на­блюдать регулярную нутацию ротора Рис. 39.с максимумами и ми­нимумами в направлении движения и перпендикулярно ему. Эта нутация и регистрирует равномерное движение тела по поверхности, а, следовательно, и его абсолютность.

Отмечу, что обыкновенный отвес не занимает вертикального положения в тележке, движу­щейся с постоянной скоростью, но и не изменяет при движении угол своего наклона, а это и есть показатель абсолютности движения тележки с постоянной скоро­стью. Отклонение отвеса обеспечивается «уплотнением» эфира, а вместе с ним и напряженности внешнего гравиполя движущимся телом. И следствия «уплотнения» будут фиксироваться самыми различными приборами, включая простейший из них физический маятник. Рас­смотрим качественно взаимодействие с гравиполем ма­ятника, колеблющегося в тележке, движущейся с посто­янной скоростью.

Прежде всего, для тела, движущегося горизонтально с постоянной скоростью во внешнем гравитационном по­ле, последнее, как уже говорилось, не остается однород­ным для качающегося грузика-маятника, в то время как для самой тележки оно остается «уплотненно» однород­ным. Поэтому фиксировать движение любого тела с постоянной скоростью можно только такими прибо­рами, которые совершают собственное движение как относительно пространства, так и относительно те­лежки. Причем, например, угол отклонения отвеса в та­кой тележке определяет как характер «уплотнения» гравиполя, так и характер колебания маятника в этом гравиполе.

На рис. 40. качественно отра­жён один период колебания маятника в движущейся те­лежке, проходящей за единицу времени 1 см (маятник проходит от одной точки до другой, нумерацию точек см. рис. 34.).


Рис. 40.

Из рисунка 40 следует, что на протяжении одного пе­риода на каждом отрезке пути маятник имеет относи­тельно Земли, а, следовательно, и относительно гравиполя, различную скорость движения, которая складывается из скорости движения тележки и скорости колебатель­ного движения маятника. Проектируя скорости на ось XX, получаем, что на участке АВ скорости тележки и ма­ятника складываются, а на участке ВА — вычитаются. Следовательно, в отличие от неподвижного относительно пространства маятника, у движущего полупериоды асимметричны. Асимметрия вызвана различными скоростями движения маятника относительно внешнего гравиполя, регистрируется по всем параметрам колебания и легко рассчитывается. На рис. 41 графически изображено изменение парамет­ров направления и скорости v движения маятника, на­пряженности его гравиполя g, и периода колебаний τ внеподвижной тележке (штрихами) и в движущейся (сплошными линиями). Фиксируется четкая симметрия изменения параметров v, g, τ у маятника, колеблющегося в неподвижной тележке.

Совершенно иная картинанаблюдается при коле­бании в тележке, движущейся с по­стоянной скоростью. Все рассматриваемые параметры v, g, τ резко асимметричны. Отмечу, что асим­метрия не наблюдается при коле-ба­нии маятника вплоскости,перпен­дикулярной движению тележки. Асим-метрия полупериодов коле­бания в плоскости движения позво­ляет эмпи-рически, находясь в закры­той тележке, определить состояние ее покоя или движения. Более того, анализ других особенностей колебания позволяет в Рис. 41.принципе найти скорость движения тележки, направление её движения, массу и радиус тела или пространства, по которому она движется. А это означает, что движениес постоянной скоростью абсолютно, а не относительно.

Вернемся к эксперименту, который Галилей проводил «в зале под палубой какого-нибудь большого корабля» на котором можно было установить маятник. Естественно, что технические возможности средневековья не могли обеспечить тех скоростей и той высоты помещения, которые потребовались бы для фиксации,например, отклонения от вертикали падающей из круж­ки капливоды. Чтобы это отклонение зафиксировать, необходи-мо «кружку» подвесить на мачте, на высоте 200-250 м, воду заменить мелкой дробью, равномерную скорость корабля держать где-то 25-30 м/с. Что и сейчас на пределе технических возможностей. И если при дви­жении такого корабля с верхушки мачты уронитьдро­бинку, то в своем падении она отклонится вперед по хо­ду больше чем на 0,5 мм. Последнее будет зафиксиро­вано приборами и подтвердит, что движение с постоянной скоростью абсолютно, а не относительно.Абсолютность равномерного движения по поверхно­сти обусловлена также тем, что фигура Земли не плоская, а круглая.

И точки протяженного предмета (например, мачты корабля), находя-щиеся на разном расстоянии от центра Земли, будут иметь различ-ную скорость относи­тельно поверх-ности. Поэтому если за время падения дробинки с мачты ееосно-вание пройдет рас­стояние АА, то верхушка — расстояния ВВ', и дро-бинкаупадет в точке С, пройдя расстояние АС = ВВ' (рис. 42.). А это и свидетельствует о движенииРис. 42.корабля.

Галилей, по-видимому, исходил из того, что изме­нения, происходящие в дви­жущемся теле, можно фик­сировать только ощущениями. И, не уловив заметных отклоне­ний в поведении тел внутри корабля, он сделал вывод, что равномерное движение по криволинейной поверх­ности является относитель­ным.

Именно поэтому прин­цип относительности распространялся им только на круговыедвижения.

Это была формальная ошибка. Ее многократно усугу­бил Ньютон, «распрямив» круг и постулировав гипотезу об относительности прямолинейного равномерного движения. Именно прямолинейное движение названо позже А. Эйнштейном принципом относительности Галилея, хотя в действи­тельности он сам является его автором.

В результате в механике оказалось не просто две ошибки в понимании движения как процесса взаимо­действия, но и утвердилось как естественное понятие прямолинейности, никогда и нигде не подтвержденное экспериментально. Гипотеза прямолинейного и равно­мерного движения без взаимодействия постепенно стала единственной сущностью инерции. С одной сто­роны, она как бы объясняла само явление инерции, а с другой — превратилась из гипотезы в реальный факт относительности, не требующий подтверждения своей истинности.

Можно предложить проведение других эксперимен­тов, способных регистрировать иными приборами дви­жение с постоянной скоростью, например атомными ча­сами, гироскопами, световыми лучами и т.д., и все они будут подтверждать качественное отличие тела непод­вижного от движущегося.

Используемый классической механикой, как и теорией относительности, принцип относительности движения с постоянной скоростью полностью не вписывается в за­коны диалектики. Не вписывается потому, что состоя­ние покоя, т.е. то состояние, в котором центр масс од­ной системы не изменяет своего положения относительно центра масс другой, отличается от со­стояния движения в пространстве в первую очередь изменением качества. Представление о том, что про­странственное движение есть изменение качества, отсутствует как у Ньюто­на, так и у Эйнштейна. Вот это не наличествующее в механике свойство изменения качественного состояния при перемещении из одного места пространства в дру­гое необходимо использовать для эмпирического определения состояния движения. Причем все свойства тела в движении меняются, но меняются в различной про­порции и по-разному в направлении движения и ортого­нально ему. И эти изменения совершенно одинаковы как для «медленных», так и для «околосветовых» скоро­стей. Только эффективность качественного изменения свойств при этом, естественно, будет проявляться с раз­ной степенью наблюдаемости, да и наблюдения будут проводиться другой категорией приборов.

Именно уверенность Ньютона и позднее Эйнштейна в невозможности качественных изменений тел при отно­сительном движении, поддержанная научным сообщест­вом, стала психологической преградой на пути любых эмпирических проверок относительности движения. Они не рассматривались и не ставились не потому, что бы­ли невозможны для физического исполнения, а потому, что были невозможны постулативно.

Физические по­стулаты превратились в ученый догмат, более жесткий и более действенный, чем догматы общественные и цер­ковные. Научный общественно-психологический запрет более жёстко давит на личность, чем любые кандалы и запоры. Он сковывает мысль. Он запрещает вольный полет фантазии. Он навешивает шоры на разум и тормо­зит развитие и науки и общества.

Однако развитие науки со скрипом продолжается. По­являются эксперименты, не влезающие в обусловленные запретом ворота и потому отвергаемые ортодоксами с порога. (Вдумайтесь — факты в физике отвергаются только потому, что они противоречат запретительным постулатам.) Однако количество таких экспериментов накапливается. Их уже неудобно «заметать под поло­вик», велика становится куча, и делается как-то уже слишком непристойно использование в качестве основ­ного аргумента популярной шуточки «этого не может быть». Появляется необходимость, превращающаяся в потребность — объяснить, какова природа этих ненуж­ных и даже неприличных экспериментов, без наруше­ния парадигмы и запретов, без разрушения сложившейся ошибочной системы мышления. И чтобы миновать запрет незави­симо от того, понимают ли это исследователи или нет, разрабатывается мощный математический аппарат (как, например, в квантовой механике), «сшивающий» некорректные постулаты и подменяющий реальное понимание физических взаимодействий системой очень «точных» математических операций, подгоняющих решение под необъяснимые эксперименты. Конвенционализм математики обусловливает возможность такого развития фи­зики.








Дата добавления: 2015-02-19; просмотров: 830;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.02 сек.