МОДЕЛИРОВАНИЕ ДИСКРЕТНЫХ СЛУЧАЙНЫХ СОБЫТИЙ

 

1. ЦЕЛЬ РАБОТЫ

Практическое освоение метода моделирования на ЭВМ дискретных случайных величин и событий.

 

2. ОСНОВЫ ТЕОРИИ

Исходным материалом для формирования на ЭВМ реализаций случайных величин с равномерными законами распределения в интервале [0,1]. Эти числа вырабатываются датчиками случайных чисел (ДСЧ)

В дальнейшем считаем, что ДСЧ в нашем распоряжении имеется.

Пусть имеется дискретная случайная величина с заданным законом распределения вероятностей

,

т.е. вероятность того, что случайная величина X примет значение xn равна pk. Значение случайной величины X можно интерпретировать как некоторые события, образующие полную группу и наступающие с соответствующими вероятностями pk ( k=1,2,...,n ).

Реализация такой случайной величины X на ЭВМ осуществляется весьма просто. Интервал определения равномерно распределённой случайной величины U[0,1] делится на подинтервалы Dk, такие, что длина k равна pk ( рис. 2.1 ).

Рис.2.1. Событие xk наступает, если uÎ∆k

 

Тогда вероятность попадания случайной величины U в интервал k оказывается равной pk: P{U k}=pk и алгоритм моделирования случайной величины X определяется простым присваиванием X=xk при u k.

Рассмотрим простой пример. Имитируется бросание игральной кости (кубика, на гранях которого изображены цифры от 1 до 6). Алгоритм имитации будет состоять в следующем. Отрезок [0,1] разбивается на 6 одинаковых частей (вероятности выпадения любой грани одинаковы). При попадании случайного числа U от ДСЧ в i-й интервал считаем, что при бросании кубика выпало i очков (рис. 2.2 ).

 

Рис. 2.2. Число очков равно номеру интервала при попадании в него числа U.

 

Аналогично строятся схемы имитации и для более сложных событий.

 

 

3. ОБЪЕКТЫ И СРЕДСТВА ИССЛЕДОВАНИЯ

В лабораторной работе исследуются случайные величины, сиязаной с бросанием симметричной монеты, игральной кости, и неокторая случайная величина, появление которой подчиняется закону Пуассона:

X : 0, 1, 2, 3,....,k....;

P: p0, p1, p2, p3,..,pK...,

 

Т.е. , k = 0,1,2,…,

где a - математическое ожидание (a>0 ). На практике часто известна интенсивность λ появления тех или иных событий. Если =const, то число событий за время t будет a= t.

Распределением Пуассона, например, описываются многие явления на определённом отрезке времени: количество пожаров, авиакатастроф, отказов ЭВМ, крушений морских судов, ураганов и т.п.

Быстрый алгоритм моделирования чисел, распределённых по закону Пуассона, состоит в следующем.

Генерируются случайные значения переменой U, равномерно распределённой в интервале [0,1], до тех пор, пока не станет справедливым следующее соотношение:

Алгоритм, реализующий этот метод, приведен на рис.2.3. Алгоритм можно оформить в виде процедуры с формальными параметрами (A, K)

Величина математического ожидания А задаётся на входе подпрограммы.

 

4. ПОДГОТОВКА К РАБОТЕ

4.1. Ознакомиться с принципами имитации дискретных случайных величин и их реализацией на ЭВМ.

4.2. Повторить операторы выбранного языка программирования.

 

Формальные параметры (A, K)

K=0

E=EXP(-A )

S=1.0

1 S=S*RANDOM

Если (S-E <0), то 3

2 K=K+1 Идти к1

3 Возврат в точку вызова

Конец

 

Рис.2.3. Подпрограмма генератора случайных величин, распределённых по закону Пуассона с математическим ожиданием A.

 

5. ПРОГРАММА РАБОТЫ

 

5.1. Имитировать бросание симметричной монеты. Результаты первых 100 бросаний вывести на печать в строку в виде последовательности букв "О" и "Р".

Составить алгоритм и программу подсчёта частоты, с которой в последовательности из N бросаний встречается заданная комбинация орлов и решек:

1. O 5. PO 9. CPO 13. PPO

2. P 6. PP 10. OPP 14. PPP

3. OO 7. OOO 11. POO

4. OP 8. OOP 12. POP

Результаты для N=(100,200,300,...,1000)вывести на печать и сравнить с теоретической вероятностью.

Программу составить для заданного номера варианта.

 

5.2. Имитировать бросание игральной кости. Результаты первых 100 бросаний вывести строкой на печать.

Составить алгоритм и программу расчёта частоты события, состоящего в том, что сумма очков при двух последовательных бросаниях равна заданному К. (К принимает значения от 2 до 12. Число бросаний равно 1000).

Сравнить рассчитанную частоту с теоретической вероятностью.

 

5.3. При работе ЭВМ время от времени возникают неисправности (сбои). Ежедневное количество сбоев описывается как случайная величина X, распределённая по закону Пуассона с параметром a =1.5.

Составить алгоритм и программу имитации сбоев в ЭВМ в течение 365 дней и вычисления частоты события: сумма числа сбоев в двух последовательных днях равна K. ( K-номер студента по списку группы). Число сбоев за каждый из первых 100 дней вывести на печать в строку.

 

6. КОНТРОЛЬНЫЕ ВОПРОСЫ.

 

6.1. В чём заключается сущность метода, реализующего случайную величину на ЭВМ?

6.2. Привести алгоритм моделирования дискретной случайной величины на ЭВМ.

6.3. Какой алгоритм используется для моделирования закона Пуассона на ЭВМ?

 








Дата добавления: 2015-02-19; просмотров: 1523;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.