Общая характеристика одношаговых методов
Всем одношаговым методам присущи определенные общие черты:
1) Чтобы получить информацию в новой точке, надо иметь данные лишь в одной предыдущей точке. Это свойство можно назвать "самостартованием", поэтому одношаговые методы в литературе иногда называются самостартующими.
2) В основе всех одношаговых методов лежит разложение функции в ряд Тейлора, в котором сохраняются члены, содержащие h в степени до k включительно. Целое число k называется порядком метода. Погрешность на шаге имеет порядок k+1.
3) Все одношаговые методы не требуют действительного вычисления производных - вычисляется лишь сама функция, однако могут понадобиться ее значения в нескольких промежуточных точках. Это влечет за собой дополнительные затраты времени и усилий.
4) Свойство "самостартования" позволяет легко менять величину шага интегрирования h.
Методы прогноза и коррекции
Эти методы в отличие от рассмотренных выше являются многоступенчатыми. Алгоритмы таких методов основываются на аппроксимации интерполяционными полиномами либо правой части обыкновенного дифференциального уравнения f(x,y), либо интегральной кривой y=y(x). Ниже рассматриваются два таких метода: метод Адамса и метод Гира.
Дата добавления: 2015-02-16; просмотров: 1228;