Формула прямоугольников
Заменим интеграл Si выражением Геометрический такая замена означает, что площадь криволинейной трапеции АВСД заменяется площадью прямоугольника АВС1Д1 (см. рис. 1).
Рис. 1
Тогда получим формулу
(26)
которая называется формулой прямоугольников на частичном отрезке [хi-1, хi].
Погрешность метода (26) определяется величиной
которую легко оценить с помощью формулы Тейлора. Действительно, запишем ψi в виде
и воспользуемся разложением
Обозначая оценим ψi следующим образом:
Таким образом, для погрешности формулы прямоугольников на частичном отрезке справедлива формула
т.е. формула имеет погрешность О(h3) при h→0.
Суммируя равенства (26) по I от 1 до N, получим составную формулу прямоугольников
Погрешность этой формулы
Отсюда, обозначая получим
т.е. погрешность формулы прямоугольников на всем отрезке есть величина О(h2). В этом случае говорят, что квадратурная формула имеет второй порядок точности.
Определение. Приближенное равенство
.
Называется квадратурной формулой.
Дата добавления: 2015-02-13; просмотров: 561;