Радикальный признак Коши.

Дан ряд с положительными членами и

Если - сходиться

Если - расходиться

Если - вопрос о сходимости не решен

 

Доказательство:

по определению , начиная с которого

 

1) Пусть С<1 выберем настолько малым, чтобы , тогда из правой части < , ряд , где q<1 сходится как ряд из членов геометрической прогрессии, со знаменателем <1, тогда исходный ряд сходится по I признаку сравнения, т.к его члены меньше членов сходящегося ряда.

2) Пусть С>1 выберем настолько малым, чтобы >1 из левой части > ; (q>1) расходится, как ряд из членов геометрической прогрессии, расходится по I признаку сравнения, т.к его члены больше членов сходящегося ряда.

3)С=1

Возьмем 2 обобщенно гармонических ряда – расходится (p=1) и -сходится (p=2>1) и покажем, что С=1.

Таким образом, при С=1 ряд может как сходится так и расходится.

Конец доказательства.

Примеры:

1)

2)

3)

 








Дата добавления: 2015-01-09; просмотров: 750;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.