ИЕРАРХИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ В САПР

Блочно-иерархический подход к проектированию РЭА включает в качестве своей основы иерархию математических моделей. Деление моделей по иерархическим уровням (уровням абстрагирования) происходит по степени детализации описываемых свойств и процессов, протекающих в объекте. При этом на каждом иерархическом уровне используют свои понятия “система” и “элементы”. Так система -го уровня рассматривается как элемент на соседнем более высоком -м уровне абстрагирования.

Представим структуру некоторого объекта в виде множества элементов (рис. 4.1) и связей между ними.

 

 
 

 

 


Рис. 1. Представление структуры объекта

 

Выделим в соответствии с блочно-иерархическим подходом в структуре объекта некоторые подмножества элементов и назовем их блоками (на рисунке показаны штриховыми линиями). Пусть состояние каждой связи характеризуется одной фазовой переменной , или . Здесь относится к внутренним связям между элементами данного блока, , относятся к выходам и входам блока соответственно. Теперь поясним важные для функциональных моделей понятия полной модели и макромодели.

Полная модель блока есть модель, составленная из моделей элементов с учетом межэлементных связей, т.е. модель, описывающая как состояние выходов, так и состояние каждого из элементов блока. Моделями элементов блока являются уравнения, связывающие входные и выходные переменные:

(1)

 

Полная модель блока есть система уравнений

, (2)

где – векторы внутренних, выходных и входных переменных блока.

При большом количестве элементов размерность вектора и порядок системы уравнений (2) становится чрезмерно большим и требуются упрощения.

При переходе к более высокому иерархическому уровню упрощения основаны на исключении из модели вектора внутренних переменных . Полученная модель представляет собой систему уравнений

(3)

существенно меньшей размерности, чем полная модель (2), и называется макромоделью. Следовательно, макромодель уже не описывает процессы внутри блока, а характеризует только процессы взаимодействия данного блока с другими в составе системы блоков.

Модели (2) и (3) относятся друг к другу как полная модель и макромодель на -м уровне иерархии. На более высоком -м уровне блок рассматривается как элемент и макромодель (3) становится моделью элемента . Следовательно, модели (1) и (3) относятся друг к другу как модели элементов соседних иерархических уровней. Из моделей типа (3) может быть составлена полная модель системы на -м уровне.

Микро-, макро- и метауровни. В зависимости от сложности объекта при его проектировании используют большее или меньшее число уровней абстракции. Объединение уровней, родственных по характеру используемого математического аппарата, приводит к образованию трех укрупненных уровней – микро-, макро- и метауровня – в иерархии функциональных моделей для большинства проектируемых сложных объектов.

На микроуровне используют математические модели, описывающие физическое состояние и процессы в сплошных средах. Для моделирования применяют аппарат уравнений математической физики. Примерами таких уравнений служат дифференциальные уравнения в частных производных – уравнения электродинамики, теплопроводности, упругости, газовой динамики. Эти уравнения описывают поля электрического потенциала и температуры в полупроводниковых кристаллах интегральных схем, напряженно-деформированное состояние деталей механических конструкций и т.п. К типичным фазовым переменным на микроуровне относятся электрические потенциалы, давления, температуры, концентрации частиц, плотности токов, механические напряжения и деформации. Независимыми переменными являются время и пространственные координаты. В качестве операторов и в уравнениях (2) фигурируют дифференциальные интегральные операторы. Уравнения (2), дополненные краевыми условиями, составляют ММ объектов на микроуровне. Анализ таких моделей сводится к решению краевых задач математической физики.

На макроуровне производится дискретизация пространств с выделением в качестве элементов отдельных деталей, дискретных радиоэлементов, участков полупроводниковых кристаллов. При этом из числа независимых переменных исключают пространственные координаты. Функциональные модели на макроуровне представляют собой системы алгебраических или обыкновенных дифференциальных уравнений, для их получения и решения используют соответствующие численные методы. В качестве фазовых переменных фигурируют электрические напряжения, токи, силы, скорости, температуры, расходы и т.д. Они характеризуют проявления внешних свойств элементов при их взаимодействии между собой и внешней средой в электронных схемах или механических конструкциях.

На метауровне с помощью дальнейшего абстрагирования от характера физических процессов удается получить приемлемое по сложности описание информационных процессов, протекающих в проектируемых объектах. НА метауровне для моделирования аналоговой РЭА широко применяют аппарат анализа систем автоматического управления, а для моделирования цифровой РЭА – математическую логику, теорию конечных автоматов, теорию массового обслуживания. Математические модели на метауровне – системы обыкновенных дифференциальных уравнений, системы логических уравнений, имитационные модели систем массового обслуживания.


 








Дата добавления: 2015-01-19; просмотров: 1352;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.