ЦЕПИ МАРКОВА. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ
Рассмотрим независимые испытания, которые можно описать следующим образом. Задано множество возможных исходов (в конечном или бесконечном числе), и каждому из них соотнесена некоторая вероятность ; вероятности последовательностей исходов определяются по правилу умножения: . В теории цепей Маркова мы рассматриваем простейшее обобщение этой схемы, которое состоит в том, что для любого испытания допускается зависимость его от непосредственно предшествующего ему испытания (и только от него). С исходом не связана более фиксированная вероятность , но зато каждой паре теперь соответствует условная вероятность ; при условии, что появился в некотором испытании, вероятность появления в следующем испытании равна . Помимо нам должны быть заданы вероятности исходов в начальном испытании. Чтобы имели приписанный им смысл, вероятности последовательностей исходов, соответствующих двум, трем или четырем испытаниям, должны быть определены равенствами
и вообще
(1)
Здесь начальному испытанию присвоен номер нуль, так, что испытание номер один является вторым.
Определение. Последовательность испытаний с возможными исходами называется цепью Маркова, если вероятности последовательностей исходов определяются формулой (1) через распределение вероятностей для в начальном (или нулевом) испытании и через фиксированные условные вероятности появления при условии, что в предыдущем испытании появился .
Для приложений цепей Маркова удобнее несколько видоизмененная технология. Возможные исходы обычно называются возможными состояниями системы; вместо того, чтобы говорить, что -е испытание окончилось появлением , говорят, что -й шаг приводит к состоянию или что система попадает в на -м шаге. Наконец, называется вероятностью перехода из в . Как обычно, мы считаем, что испытания происходят через равные интервалы времени, так что номер шага служит временным параметром.
Вероятности перехода будут расположены в матрицу переходных вероятностей
(2)
где первый индекс означает номер строки, а второй – номер столбца. Ясно, что – квадратная матрица с неотрицательными элементами и единичными суммами по строкам. Такая матрица (конечная или бесконечная) называется стохастической матрицей. Любая стохастическая матрица может служить матрицей переходных вероятностей; вместе с нашим начальным распределением она полностью определяет цепь Маркова с состояниями .
В некоторых частных случаях бывает удобно нумеровать состояния, начиная с 0, а не с 1. Тогда к матрице следует добавить нулевые строку и столбец.
2. Пояснительные примеры
а) Когда у цепи есть только два возможных состояния , матрица переходных вероятностей с необходимостью имеет вид
.
Подобная цепь могла бы быть реализована в следующем мысленном эксперименте. Частица движется вдоль оси таким образом, что абсолютная величина ее скорости остается постоянной, но направление движения может меняться на противоположное. Говорят, что система находится в состоянии , если частица движется направо, и в состоянии , если она движется налево. Тогда – вероятность поворота, когда частица движется направо, а – вероятность поворота при движении налево.
б) Случайное блуждание с поглощающими экранами. Пусть возможными состояниями будут ; рассмотрим матрицу переходных вероятностей
.
Из каждого “внутреннего” состояния возможны переходы в правое и левое соседние состояния (с вероятностями и ). Однако ни из ни из невозможны переходы в какое либо иное состояние; система будет переходить из одного состояния в другое, но коль скоро будет достигнуто или система останется неизменной навсегда.
в) Отражающие экраны. Интересный вариант предыдущего примера представляет собой цепь с возможными состояниями и переходными вероятностями
.
Эту цепь можно интерпретировать на языке азартных игр, рассматривая двух игроков, ведущих игру с единичными ставками и с соглашением, что каждый раз, когда один из игроков проигрывает свой последний доллар, тот немедленно возвращается ему его противником, так, что игра может продолжаться бесконечно. Мы предполагаем, что игроки вместе имеют долларов, и мы говорим, что система находится в состоянии , если их капиталы равны и соответственно. Тогда переходные вероятности даются нашей матрицей .
Дата добавления: 2015-01-19; просмотров: 1412;