ЗА НЕСКОЛЬКО ШАГОВ

Мы обозначим через вероятность перехода из в ровно за шагов. Иначе говоря есть условная вероятность попадания в на -м шаге при условии, что начальным состоянием. Было ; она равна сумме вероятностей всех путей длины , начинающихся в и оканчивающихся в . В частности, и

. (1)

По индукции мы получаем общую рекуррентную формулу

(2)

дальнейшая индукция по приводит к основному тождеству

. (3)

(которое является частным случаем уравнения Колмогорова-Чепмена). Оно отражает тот простой факт, что первые шагов приводят из в некоторое промежуточное состояние и что вероятность последующего перехода из в не зависит от того, каким образом было достигнуто .

Так же как и в случае , образовавших матрицу , мы расположим в матрицу, которую обозначим . Тогда (2) утверждает, что для того, чтобы получит элемент матрицы , мы должны умножить элементы -й строки на соответствующие элементы -го столбца и сложить полученные произведения. Эта операция называется умножением матриц и и выражается символически равенством . Данное определение позволяет назвать -й степенью ; уравнение (3) выражает известный закон .

Для того чтобы (3.3) было справедливо для всех , мы определим , положив и при , что вполне естественно.

Пример. Независимые испытания. Обычно бывает трудно получить явные выражения для вероятностей перехода за несколько шагов, однако, к счастью они не представляют особого интереса. Как важное, хотя и тривиальное исключение, мы отметим частный случай независимых испытаний. Этот случай имеет место тогда, когда все строки тождественно совпадают с данным распределением вероятностей, и ясно без вычислений, чт о отсюда следует равенство при всех .

Безусловные вероятности

Пусть снова означает вероятность состояния в начальном (нулевом) испытании. Тогда (безусловная) вероятность попадания в на -м шаге равна

. (4)

Обычно мы считаем, что процесс начинается из фиксированного состояния , т.е. полагаем . В этом случае . Интуитивно мы чувствуем, что влияние начального состояния должно постепенно ослабевать, так как при больших распределение (3.4) должно быть почти независимым от начального распределения . Так оно и будет, если (как в последнем примере) сходится к независящему от пределу, т.е. если сходится к матрице с одинаковыми строками. Мы видим, что обычно это действительно так, хотя нам и придется еще принимать в расчет досадные исключения, обусловленные периодичностью.

Пример. Вероятности перехода за несколько шагов

Вероятности перехода за несколько шагов проиллюстрируем сначала путем возведения матрицы в степень, оперируя стохастической матрицей.

Для определения всевозможных путей достижения нужного состояния (нужной вершины в графе) проделаем подобное возведение матрицы в степень с элементами, являющимися мнемоническими обозначениями путей.

 

 


; (за один шаг)

. (за 2 шага)

. (за 3 шага)

 

= . (за 4 шага)

 

То же, но с символьными обозначениями для отслеживания путей

, (за один шаг)

.

. (за 2 шага)

=

 

=

.

(за 3 шага из состояния 1 в то же состояние 1)

 









Дата добавления: 2015-01-19; просмотров: 1329;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.017 сек.