Разложение многочлена в комплексной области на линейные множители.
Пусть Pn (z) – многочлен степени n, а z1 – его корень. Тогда по теореме Безу Pn (z) можно представить в виде:
Pn (z) = (z – z1) Qn-1 (z),
где Qn-1 – многочлен степени n – 1. Если при этом Qn-1 (z1) = 0, его вновь можно представить как ( z – z1 )Qn-2 (z), a Pn (z) = (z – z1)Qn-2 (z).
Определение 8.3. Натуральное число k1 называется кратностью корня z1 многочлена Pn (z), если этот многочлен делится на , но не делится на . Корень кратности 1 называется простым,а корень кратности, большей 1, - кратным.
Итак, если z1 – корень Pn кратности k1 , то Из основной теоремы алгебры следует, что многочлен тоже имеет корень. Обозначим его z2 , а его кратность k2 . Тогда а , (8.2)
где Следовательно, в комплексной области всякий многочлен можно разложить на линейные множители.
Дата добавления: 2015-03-19; просмотров: 796;