Формула интегрирования по частям.

Теорема 6.3. Если функции u(x) и v(x) дифференцируемы на некотором промежутке, и на нем существует интеграл , то на нем существует и интеграл причем

(6.3)

Доказательство.

d(uv) = vdu + udv, поэтому udv = d(uv) – vdu. Проинтегрируем обе части полученного равенства, учитывая, что Тогда что и требовалось доказать. Существование интеграла в левой части равенства следует из существования обоих интегралов в правой части.

Пример.

 








Дата добавления: 2015-03-19; просмотров: 736;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.