Формула Пуассона для малоймовірних випадкових подій

Точність асимптотичних формул для великих значень n — числа повторних незалежних експериментів за схемою Бернуллі — знижується з наближенням p до нуля. Тому при за умови np = a =const імовірність появи випадкової події m раз обчислюється за такою асимптотичною формулою:

, (47)

яка називається формулою Пуассона.

!

Доведення. Оскільки а = np, то .

Запишемо формулу Бернуллі у такому вигляді:

Коли , дістаємо:

.

Оскільки ,

.

Отже,

,

а для великих, але обмежених значень n маємо:

, що й потрібно було довести.

Із (47) випливає:

; (48)

.

І справді, це підтверджується ще й тим, що події утворюють повну групу.

Функція Рn (m) визначається за таблицею, наведеною в дод. 3, за заданим m і обчисленим значенням а = np.

Приклад 1. Радіоприлад містить 1000 мікроелементів, які працюють незалежно один від одного, причому кожний може вийти з ладу під час роботи приладу з імовірністю р =
= 0,002. Обчислити ймовірності таких випадкових подій:
1) під час роботи приладу з ладу вийдуть 3 мікроелементи; 2) від трьох до шести.

Розв’язання. За умовою задачі маємо n = 1000; p = 0,002; m = 3; 3 . Оскільки n велике, а р мале число, то для обчислення ймовірностей застосуємо формули (47) і (48). Для цього обчислимо значення параметра а = np = 1000 · 0,002 = 2.

1) .

2)








Дата добавления: 2014-11-29; просмотров: 1705;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.