Визначення прискорень точок плоскої фігури за допомогою миттєвого центра прискорень

Нехай точка є миттєвим центром прискорень, тобто .

Якщо прийняти миттєвий центр прискорень за полюс, то прискорення будь-якої точки плоскої фігури визначається як прискорення цієї точки у обертальному русі навколо миттєвого центру прискорень (рис. 18.4):

 

;

, (18.14)

де спрямований під кутом до відрізка , спрямований під кутом до відрізка і т.д.

За модулем прискорення точок визначаються формулами:

,

,… (18.15)

 

Звідки випливає, що

. (18.16)

Отже, прискорення точок плоскої фігури в кожний момент часу пропорційні відстаням цих точок від миттєвого центра прискорень і направлені під одним і тим же кутом до відрізків, що з'єднують ці точки з миттєвим центром прискорень, у бік обертання, якщо і в протилежний бік, якщо (рис. 18.4).

Таким чином, при обчисленні прискорень точок плоскої фігури можна вважати, що плоска фігура в даний момент обертається навколо миттєвого центра прискорень.

18.4. Випадки визначення положення миттєвого центра прискорень (МЦП)

Випадок 1. Якщо відома точка тіла, прискорення якої у даний момент часу дорівнює нулю, тобто вона і буде МЦП (рис. 18.5). Колесо котиться без ковзання за прямолінійною рейкою зі сталою швидкістю центра . Тоді і точка співпадає з центром колеса . Прискорення точок, які лежать на ободі колеса спрямовані уздовж відповідних радіусів до центру колеса і становлять:

.

Прискорення точки , яка лежить на відстані відцентру, становить і спрямоване до центру колеса .

Зауважимо, що миттєвий центр прискорень не збігається з миттєвим центром швидкостей даної плоскої фігури. Це різні точки (рис. 18.5).

Випадок ІІ. У даний момент відомі модуль і напрям прискорення точки А, а також напрями і величини кутової швидкості і кутового прискорення, тобто ; (рис. 18.6).

У цьому випадку МЦП лежить на відрізку, що утворює з напрямом вектора кут , який відраховується від у бік напряму . Відстань від точки А до МЦП дорівнює:

.

Випадок ІІІ. У даний момент часу відомі модулі і напрям прискорення точки А, а також що , а (рис. 18.7). У цьому випадку . Тобто і МЦП розташований на промені вектора . Його відстань від точки визначається за формулою: ;

У випадку, коли , а , миттєвий центр прискорень лежить у точці перетину прямих, за якими спрямовані прискорення точок плоскої фігури (рис. 18.8).

 
 

Випадок ІV. У даний момент часу відому модуль і напрям прискорення точки , а також що , . У цьому випадку , тобто і МЦП, розташований на перпендикулярі до вектора . Його відстань від точки визначається за формулою (рис. 18.9).

У випадку, коли , а миттєвий центр прискорень лежить у точці перетину перпендикулярів до векторів прискорень точок плоскої фігури, проведених з цих точок (рис. 18.10).

Випадок V. Якщо відомі прискорення і двох точок плоскої фігури, то миттєвий центр прискорень знаходиться у точці перетину променів, які виходять з цих точок під кутом , що утворює вектор з відрізком , і цей кут потрібно відкладати від векторів і за напрямом (рис. 18.11).

 
 

Дійсно, щоб знайти миттєвий центр прискорень, приймаємо одну з цих точок, наприклад точку , за полюс. На підставі (18.8) одержимо

.

Звідки прискорення точки у обертальному русі навколо точки дорівнюватиме:

Побудувавши у точці паралелограм на векторах і ( ), знайдемо і кут , який утворює вектор з відрізком , а разом з тим і напрям (рис. 18.11).

;

.

 
 

Потім з точок і проведемо промені і під кутом відповідно до і , відкладеним за напрямом . У точці перетину цих прямих і буде знаходитись миттєвий центр прискорень точки .

Значення прискорення т. С з відношення , а його напрям під кутом до згідно напряму .

Випадок VІ. У даний момент часу відомі модулі і напрям прискорень двох точок і твердого тіла. При чому вектори і паралельні (рис. 18.12). Положення МЦП у цьому випадку визначається на підставі того, що модулі прискорень точок пропорційні довжинам відрізків, що з’єднують точки з МЦП і кут між векторами прискорення точок і цими відрізками сталий:

.

На рис. 18.13 зображено визначення МЦП при і якщо , а .

На рис. 18.14 зображено визначення МЦП при і якщо , .

Випадок VІІ. Якщо прискорення двох точок тіла і рівні за модулем івектори і паралельні, то МЦП перебуває у нескінченності, а прискоренняусіх точок тіла рівні між собою.

 
 

 
 

18.5. Приклади розв’язання задач

Приклад 1. Знайти прискорення точки на ободі колеса радіусом , що котиться без ковзання по нерухомій рейці швидкістю м/с і прискоренням м/с (рис. 18.15).

Розв’язання. Рух колеса є плоскопаралельним ( ). Миттєва вісь обертання проходить через миттєвий центр швидкостей ( ), перпендикулярно рисунку. За полюс обираємо центр колеса відповідно формулі (18.6), маємо:

;

; .

Знайдемо і :

;

.

Тоді величина прискорення точки дорівнюватиме:

.

Приклад 2. Знайти положення миттєвого центра прискорень колеса радіусом , що котиться без ковзання по нерухомій рейці зі швидкістю м/с і прискоренням м/с . Визначити напрям прискорення МЦШ (рис. 16.16).

Розв’язання. За полюс обираємо центр колеса . Тодіточка – МЦШ, тобто

; ; ;

;

.

Оскільки, і направлені в один бік, то >0. Для визначення положення миттєвого центра прискорень точки слід повернути напрямок вектора на кут у бік прискореного обертання, тобто за годинниковою стрілкою, і відкласти на одержаному промені відрізок

м см.

Зазначимо, що

, .

звідки . Відмічаємо точку на рисунку.

Прискорення МЦШ за модулем дорівнює , де замірюємо лінійкою з урахуванням масштабу. Вектор прискорення , спрямований під кутом , який відкладемо від відрізка проти обертання колеса.

 

 









Дата добавления: 2014-12-20; просмотров: 1755; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2022 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.