С явными потерями и простейшим потоком вызовов
В полнодоступном пучке обслуживающих приборов любой вход может быть соединен с любым свободным выходом. Рассмотрим однозвенную неблокирующую коммутационную схему, на которую поступает простейший поток вызов с параметром
, дисциплина обслуживания - с явными потерями.
Время обслуживания одного вызова – случайная величина, распределенная по показательному закону со средним значением, принятым за единицу времени
,т.е.
Требуется определить вероятность возможных состояний полнодоступного пучка в процессе обслуживания поступающих вызовов, если число занятых линий
-состояния коммутационной системы
.
При поступлении вызова или окончания занятия, коммутационная система скачкообразно переходит из одного состояния в другое. Допустим, что в момент времени
известно i-ое состояние коммутационной системы либо распределение вероятностей состояния
.Возникает задача: найти распределение
.
Возьмем на оси времени временной отрезок длиной
и выделим на нем бесконечно малый промежуток
.
В состояние
коммутационная система могла перейти из какого-то состояния
за промежуток времени
.
Вероятность перехода коммутационной системы из состояния
в состояние
за промежуток времени
, оценивается с помощью переходной вероятности
. Тогда уравнение для вероятностей состояния системы будет иметь вид:

Выражение (5.1) - уравнение Колмогорова-Чепмена,
где
- вероятность того, что в момент времени
занято
линий;
- вероятность того, что за время
коммутационная система перейдет из k-го состояния в
–ое состояние.
Обозначим:
1) вероятность поступления в промежутке
нового вызова
;
2) вероятность неизменного состояния коммутационной системы
;
3) вероятность освобождения одного выхода
.
Тогда уравнение (5.1) примет вид:
(5.2)
Используем определение параметра потока (см.формулу 2.4). На основании определения параметра потока, можно найти переходные вероятности:
(5.3)
Подставим (5.3) в (5.2), тогда получим:


(5.4)
Переходя к пределу при
, выражение (5.4) можно переписать в
(5.5)
Из формулы (5.5) можно определить
:
(5.6)
При определении
будем учитывать, что вероятности
не существуют.
Выражение (5.6) является исходным уравнением для получения системы уравнений Эрланга:
- при
;
- при
.
–вероятности того, что в пучке соответственно занято i и V линий.
Проведя нормирование, т.е. учитывая формулу (2.9), определим величину
:

Тогда решение задачи определения
сводится к решению уравнения:

Формула (5.8) носит название - первое распределение Эрланга.
Дата добавления: 2017-02-20; просмотров: 750;
