Классификация показательных уравнений.
1. Уравнения, решаемые переходом к одному основанию.
Пример 18. Решить уравнение .
Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .
2. Уравнения, решаемые переходом к одному показателю степени.
Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.
Пример 19. Решить уравнение:
Решение:
.
3. Уравнения, решаемые вынесением общего множителя за скобки.
Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.
Пример 20. Решить уравнение .
Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:
.
Пример 21. Решить уравнение
Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:
.
4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям.
К квадратному уравнению относительно новой переменной y сводятся уравнения:
а) вида подстановкой , при этом ;
б) вида подстановкой , при этом .
Пример 22. Решить уравнение .
Решение: Сделаем замену переменной и решим квадратное уравнение:
.
Ответ: 0; 1.
5. Однородные относительно показательных функций уравнения.
Уравнение вида является однородным уравнением второй степени относительно неизвестных ax и bx . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.
Пример 23. Решить уравнение .
Решение: Разделим обе части уравнения на :
.
Положив , получим квадратное уравнение с корнями .
Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x.
Ответ: -1/2.
6. Рациональные относительно показательных функций уравнения.
Пример 24. Решить уравнение .
Решение: Разделим числитель и знаменатель дроби на 3x и получим вместо двух – одну показательную функцию:
7. Уравнения вида .
Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .
Пример 25. Решить уравнение: .
Решение:
.
Дата добавления: 2017-09-19; просмотров: 167;