Особенности алгоритма метода искусственного базиса

Алгоритм метода искусственного базиса имеет следующие особенности:

1. Ввиду того, что начальное опорное решение расширенной задачи содержит искусственные переменные, входящие в целевую функцию с коэффициентом -М (в задаче на максимум) или +М (в задаче на минимум), оценки разложений векторов условий состоят из двух слагаемых и , одно из которых не зависит от М, а другое зависит от М. Так как М скольугодно велико по сравнению с единицей (М>>1), то на первом этапе расчета для нахождения векторов, вводимых в базис, используются только слагаемые оценок .

2. Векторы, соответствующие искусственным переменным, которые выводятся из базиса опорного решения, исключаются из рассмотрения.

3. После того, как все векторы, соответствующие искусственным переменным, исключаются из базиса, расчет продолжается обычным симплексным методом с использованием оценок , не зависящих от М.

4. Переход от решения расширенной задачи к решению исходной задачи производится с использованием доказанных выше теорем 4.1-4.3.

Пример 4.4. Решить задачу линейного программирования методом искусственного базиса

.

Решение. Составляем расширенную задачу. В левые части уравнений системы ограничений вводим неотрицательные искусственные переменные с коэффициентом (всегда) +1. Удобно справа от уравнений записать вводимые искусственные переменные. В первое уравнение вводим , во второе - . Данная задача - задача на нахождение максимума, поэтому и в целевую функцию вводятся с коэффициентом - М. Получаем

Задача имеет начальное опорное решение с единичным базисом . Вычисляем оценки векторов условий по базису опорного решения и значение целевой функции на опорном решении.

. .

Записываем исходные данные в симплексную таблицу (табл. 4.6).

Т а б л и ц а 4.6

 

При этом оценки и для удобства вычислений записываем в две строки: в первую - слагаемые , не зависящие от М, во вторую - слагаемые , зависящие от М. Значения удобно указывать без М, имея в виду однако, что оно там присутствует.

Начальное опорное решение не является оптимальным, так как в задаче на максимум имеются отрицательные оценки. Выбираем номер вектора , вводимого в базис опорного решения, и номер вектора , выводимого из базиса. Для этого вычисляем приращения целевой функции при введении в базис каждого из векторов с отрицательной оценкой и находим максимум этого приращения. При этом слагаемыми оценок (без М) пренебрегаем до тех пор, пока хотя бы одно слагаемое М) не будет отлично от нуля. В связи с этим строка со слагаемыми оценок может отсутствовать в таблице до тех пор, пока присутствует строка . Находим при k = 3.

В третьем столбце " " за разрешающий элемент выбираем коэффициент 1 во второй строке и выполняем преобразование Жордана.

Вектор , выводимый из базиса, исключаем из рассмотрения (вычеркиваем). Получаем опорное решение с базисом (табл. 4.7). Решение не является оптимальным так как имеется отрицательная оценка = -1.

Т а б л и ц а 4.7


В столбце " " единственный положительный элемент принимаем за разрешающий и переходим к новому опорному решению с базисом (табл. 4.8).

Т а б л и ц а 4.8

 

Данное опорное решение является единственным оптимальным решением расширенной задачи, так как в задаче на максимум оценки для всех векторов, не входящих в базис, положительны. По теореме 4.1 исходная задача также имеет оптимальное решение, которое получается из оптимального решения расширенной задачи отбрасыванием нулевых искусственных переменных, т. е. Х* = (0,0,6,2).

Ответ: max Z(X) = -10 при .

Пример 4.5. Решить методом искусственного базиса задачу линейного программирования со смешанными ограничениями

Д И

Решение. Приводим задачу линейного программирования к каноническому виду. Для этого вводим дополнительные переменные и в первое и третье ограничения соответственно. Получаем

.

Составляем расширенную задачу, для чего вводим искусственные переменные и во второе и третье уравнения соответственно. Получаем

.

Данная расширенная задача имеет начальное опорное решение

с единичным базисом , . Вычисляем оценки векторов условий по базису опорного решения и записываем в симплексную таблицу так же, как в предыдущем примере. Решение не является оптимальным, так как в задаче на минимум векторы и имеют положительные оценки . Улучшаем опорные решения. Каждому опорному решению соответствует своя таблица. Все таблицы можно записать друг под другом, объединив в единую таблицу (табл. 4.9).

Т а б л и ц а 4.9


Определяем, введение какого из векторов или в базис начального опорного решения приведет к большему уменьшению целевой функции. Находим при k = 2, т. е. лучше ввести в базис вектор . Получаем второе опорное решение с базисом . Целевая функция . Это решение также не является оптимальным, так как вектор имеет положительную оценку . Вводим вектор в базис, получаем третье опорное решение с базисом . Целевая функция . Это решение оптимальное, но не единственное, так как вектор , не входящий в базис, имеет нулевую оценку. Поэтому необходимо перейти к новому опорному решению, которое также будет оптимальным. Для этого требуется ввести в базис вектор .

Переходим к четвертому опорному (оптимальному) решению

с базисом , при этом . Оптимальные решения расширенной задачи , имеют нулевые искусственные переменные. Поэтому (по теореме 4.1) исходная задача также имеет два оптимальных решения и . Дополнительные переменные в оптимальном решении исходной задачи не записываем.

Ответ: при , , , .


 








Дата добавления: 2017-05-18; просмотров: 768;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.