Сравнение выражений
Вначале рассматривается сравнение чисел с опорой на множества, и результат фиксируется с помощью знаков «больше», «меньше», «равно». После этого дети сравнивают число и выражение, найдя значение выражения, сравнивают его с данным числом.
Например, 5 ∙ 3 + 4, 5 ∙ 5 – 2. Желательно давать не только готовые выражения, но и составлять их, используя предметные действия с множествами. На третьем этапе дети сравнивают два выражения вида 10 – 5 и 3 + 4; 8 – 3 и 8 – 4. В таких выражениях сравнение можно производить не только нахождением их значений, но и наблюдением за компонентами действия. (Чем большее число мы отнимем от одного и того же числа, тем меньше будет остаток).
Работа по сравнению выражений и составлению верных равенств часто связана с преобразованием выражений на основе изучаемых свойств:
310 . 12 ∙ 310 . 10 + 310 . 2; 180 : (10 . 3) ∙ 180 : 10 . 3; (10 + 9) . 4 ∙ 10 . 4 + 9.
При сравнении выражений дети знакомятся с терминами «равенство» и «неравенство», которые могут быть верными или неверными.
В программе «Школа 2000» алгебраический материал не только связан с арифметическим материалом, но и является материалом для развития учащихся. Он намного богаче содержанием и вводится с первого класса.
Как и в традиции, составляются выражения (по рисункам), причем не только числовые, но и буквенные:
П + К а + б a + б = к, к – а = б
Рано вводятся термины «равенство», «неравенство», «выражение».
Сравнение выражений основано на рассуждении:
7 - 4 ∙ 7 + 1; а + д ∙ а – д, 8 – к ∙ 9 – к…
Правила о порядке выполнения действий рассматриваются с точки зрения алгоритмов (т.е. составление программ).
3 + (8 – 2) 3 + 8 – 2
Для закрепления правил выполняются такие упражнения
1) расставь скобки по заданной программе;
2) составь выражения по схеме-«дереву»;
3) составь программу действий в выражении
a : b – c . (d + k) . m : n
Выражение с переменной
Подготовительная работа заключается в решении задач с недостающими данными, например: Купили несколько дневников по пять рублей. Сколько заплатили за дневники?
В первом классе дети знакомятся с записями вида 12 -, где в пустой квадрат подставляются числа и вычисляются значения получившихся выражений. Здесь можно проследить зависимость разности от значения, вычитаемого и определить допустимые значения вычитаемого.
Во втором классе вместо ставится буквы латинского алфавита, и дети учатся читать выражения вида c – d, k . 5, 28 + b и находить их значения при заданных значениях букв (переменных). Часто такие задания оформляются в виде таблицы.
Выражения с переменной очень широко используются для обобщения знаний:
1) Все законы и свойства записываются в общем виде:
(a .b ) . c = а. . (b . с) - сочетательный закон умножения,
а + b = b + а а . 0=0 . а = 0 а .1 = а
2) Решения задач (из блиц-турниров) записываются в общем виде, с буквенными данными:
а . 4 + b
3) Вводятся условные обозначения величин и их формулы:
s = a . b ; v = a . b . c ; s = v . t
4) Производятся упрощения в выражениях: 3 + у + 10 + 5; 4 . а . 5.
Вопрос 20. Формирование представлений об уравнении. Методика обучения решению уравнений и задач, решаемых уравнением.
В начальной школе рассматриваются уравнения, содержащие только одно действие. Первоначально они решаются подбором. В дальнейшем уравнения решаются на основе зависимости между компонентами и результатами действий.
В традиционной школе уравнения вводятся во втором классе, а в других системах – с начала обучения. Дети знакомятся с терминами «уравнение» и «решение уравнения». Для закрепления этих понятий предлагаются упражнения: «Выбери среди данных записей уравнения», «Преврати (составь) уравнения». Кроме этого включаются задания такого вида:
«Угадай корни: 7 + х = 7; 7 – у = 0; n – 0 = 7; а – а = 7; b – b = 0».
Методом составления уравнения решаются некоторые простые задачи: Площадь прямоугольника 36 см2, длина – 9 см. Найти его ширину.
В «Школе 2000» уравнения вводятся в 3 части 1 класса. Вначале выполняются привычные операции с множествами-«мешками»:
ooo + х = ooov х = v,
и вводится термин «уравнение».
Опорой для решения уравнений являются понятия части и целого. В течение подготовительного периода учащиеся осваивают эти понятия в операциях с множествами и усваивают их соотношения: чтобы найти одну часть надо от целого отнять другую часть.
Последовательность введения уравнений такая же, как и в традиционной программе, но на одном уроке при закреплении могут встречаться уравнения разных видов, т.к. основа их решения похожа.
Помощниками в решении уравнениях являются:
1) рисунки весов 2 + х = 4
2) схемы 5 – х = 4 х + 3 = 7
3) числовые отрезки
4) уравнения с линиями
Кроме уравнений на нахождение части и целого, включены нестандартные уравнения:
26 + 26 + 26 = 26 . у ; у + у + у = 115 . 3;
145 . х = 145; 8 . х = 0 ; 5 . х = 45;
х : х = 1; х . 1 = х; 0 . х = 0; х : 0 = 0; х : 1 = х.
Во 2 классе. включены уравнения вида а . х = b, а : х = b, х : а = b
Основой для их решений является зависимость между сторонами прямоугольника и его площадью: чтобы найти сторону
|
|
Структура уравнений во 2 кл. не меняется, только изменяется числовое множество: 200 . х = 600.
В 3 кл. происходит обобщение знаний по уравнениям: вводится термин „уравнение“, „решение уравнения“ и рекомендуется решать их с комментированием:
(х+3) : 8 = 5
1. Неизвестное делимое х+3. Чтобы найти …
2. Упрощение…
3. Неизвестное…
Уравнения содержат 3-4 действия (m..4+6) : 9 = 2
При изучении дробей включены уравнения
,которые решаются аналогично.
В системе РОЗ (М1А, стр. 19) вводятся термины «равенства», «неравенства», с помощью рисунков составляются верные равенства и неравенства. Неверные неравенства превращаются в верные.
Во второй четверти вводятся уравнения - дается определение уравнения, его решения (« решить уравнение – значит найти такое число, при котором получается верное равенство»). Первоначально рассматриваются уравнения вида
х + 5 = 9, которые вводятся через задачу.
Уравнения могут быть не стандартными:
( 5 + х ) + 2 = 11,где надо догадаться при сравнении равенств,
( 5 + 4 ) + 2 = 11,чему равно неизвестное.
В конце первого класса, дети знакомятся с уравнениями вида:
13 – х = 5 , 17 – а = 9, которые решаются на основе правил нахождения вычитаемого, а затем и уменьшаемого:
к – 4 = 7, к – 12 = 6.
Все виды этих уравнений даются в сравнении друг с другом:
а + 7 = 15, 15 – а = 7, а - 7 = 8,
надо выяснить связь этих уравнений и тогда найти решение.
Во втором классе продолжается работа над уравнениями, где надо найти самое большое число и воспользоваться обратными действиями:
а + 23 = 41 85 – к = 72
х . 7 = 56 е : 4 = 9
Уравнения, связанные с действиями умножения и деления решаются с помощью таблицы умножения (подбором).
Для решения уравнений другим способом изучаются основные свойства равенств:
1) а = b, ó a + c = b + c, ó a– c = b – c.
2) a = b, c 0 ó a . c = b . c, ó a : c = b : c.
12х – х - 55 = 0 11х – 55 = 0
5 у + 7 = 62 5у + 7 = 62
Уравнения вида 5х + 15 = 80 – 8 х , , 7. (а – 1) = 3. (а + 9) решаются на основе свойств равенств .
Вопрос 21. Методика изучения геометрического материала в начальной школе.
Математическое развитие школьников невозможно без приобщения их к геометрии. В начальных классах ставится задача расширить и уточнить представления учащихся о геометрических фигурах, а также развивать их пространственное мышление в процессе выполнения различных практических упражнений.
Для осуществления методической работы, направленной на решение этих задач, учителю необходимо знать, что геометрия как наука строится на базе основных понятий и аксиом, а новые факты вводятся дедуктивным путем. Школьный курс геометрии – это евклидова геометрия на плоскости и в пространстве. Эта геометрия опирается на понятие величины и ее измерения. Формирование представлений о геометрических фигурах в начальной школе связано с изучением длины и площади.
Основой формирования представлений о геометрических фигурах является способность детей воспринимать форму предмета. Эта способность позволяет узнавать, различать и изображать различные геометрические фигуры:
Основными геометрическими фигурами, изучаемыми в начальной школе, являются: точка, прямая и кривая линии, отрезок и ломаная, а затем угол, прямоугольник, квадрат, многоугольник, треугольник.
Чтобы дети имели представление об этих фигурах, их достаточно показать и назвать термином (остенсивное определение). Но ученик воспринимает фигуру как целостный объект и не выделяет свойства объекта, поэтому не всегда узнает знакомые фигуры, расположенные необычно:
«не «не квадрат» «не прямоугольник» «треугольник» «многоугольник»
В дальнейшем необходимо изучать существенные свойства объектов для точных представлений о них. Для этой цели геометрические фигуры изучают в определенной последовательности, выполняя с моделями различные практические действия.
Точка- след карандаша, ручки, мела. Через точку дети проводят различные линии: прямые и кривые. Убеждаются, что через точку можно провести сколько угодно прямых и кривых, а через две точки – только одну прямую и множество кривых.
Прямая - основное и неопределяемое понятие. Если согнуть лист бумаги, то линия сгиба будет моделью прямой. Прямую через одну или две точки можно проводить только по линейке. В процессе выполнения этих упражнений дети должны научиться различать такие понятия, как: «точка пересечения двух линий», «прямая проходит через точку», или «точка принадлежит прямой» и т.д. Учащиеся могут находить прямые и кривые линии на различных геометрических фигурах: «круг», «квадрат», «прямоугольник», «пирамида», «конус», «цилиндр», «шар» и т.д.
Отрезок – это часть прямой между двумя ее точками. Отрезок имеет начало и конец, любая его точка может быть и концом и началом. Отрезок имеет длину. Отрезки можно сравнивать, складывать и отнимать, измерять.
Ученику начальных классов трудно различать такие понятия как «прямая» и «отрезок» и идти к пониманию отрезка от прямой. В просторечии слово «отрезок» почти не употребляется, говорят: «прямая», «идти по прямой», но при этом никто не имеет в виду бесконечную прямую, как принято в геометрии. Бесконечную прямую нельзя изобразить на бумаге. В учебниках математики для начальной школы принято при изображении отрезка отмечать его начало и конец точками или штрихами, чего нет в изображении прямой.
Угол можно ввести как фигуру, образованную двумя лучами, исходящими из одной точки. Такой подход к введению понятия угла возможен там, где вводится понятие луча, как части прямой, имеющей начало, но не имеющей конца. (например, М1А). В учебнике М2П углом называют часть плоскости, заключенной между двумя лучами, исходящими из одной точки, причем называют меньшую часть, т.к. плоскость делится лучами на две части.
Дата добавления: 2016-05-11; просмотров: 4276;