Агрегатная форма индексов

 

Чаще всего используют индексы, представляющие собой сравне­ние сумм агрегатов.

Используя агрегатную форму индексов,можно охарактеризовать изменение явления в пространстве (территориальные) и во време­ни. Использование агрегатной формы индексов позволяет сравни­вать изменения состояния неоднородных совокупностей. Напри­мер, общий индекс цен может быть рассчитан двумя способами:

- так называемый индекс Пааше.

В приведенном индексе цена на каждый товар взвешена соответствующим объемом продаж. Таким образом, в числителе будет товарооборот отчетного периода, а в знаменателе - товарооборот отчетного периода в базисных ценах. Следовательно, индекс показывает изменение цен при неизмен­ном количестве.

Индекс Пааше наиболее часто используется в экономических расчетах, однако, может быть использован и другой индекс:

- так называемый индекс Лайспереса.

Если цену оставить неизменной, а количество проиндексировать (изменить), то получим индекс физического объема:

, который будет отражать изменение количества продаж. Здесь цена будет использоваться в качестве соизмерителя.

Для того чтобы определить общее изменение товарооборота по группе товаров, нужно общий товарооборот в отчетном периоде разделить на общий товарооборот в базисном периоде:

Данный индекс показывает, что на товарооборот влияют два фактора: цена и количество проданного товара, следовательно, индекс может быть представлен в виде двухфакторной мультипликативной модели итогового показателя:

Если взаимосвязь между величинами выражена в форме произведения, либо частного, то эта взаимосвязь сохраняется и для индивидуальных величин.

Правило построения индексовможно сформулировать следующим образом:

В том случае, если индексируется качественный показатель (цена, себестоимость, урожайность, трудоемкость, производительность и т.д.), то веса берутся обычно на уровне отчетного периода. В том же случае, если индексируется количественный показатель (объем производства, количество проданных товаров, численность занятых), то соизмеритель берется на уровне базисного периода.

Перечисленные индексы представлены в виде отношения, поэтому они характеризуют относительное изменение цен, физического объема и товарооборота. Эти же самые индексы могут бытьпредставлены в виде разностей. В этом случае они показывают абсолютное изменение показателя всего и в том числе - за счет отдельных факторов (разложение общего прироста).

Абсолютное изменение общего товарооборота: ,

в том числе:

- за счет изменения цен: ,

- за счет изменения физического объема продаж: .

То же самое можно записать следующим образом:

- за счет изменения физического объема продаж: ;

- за счет изменения цен: .

Агрегатные индексы можно использовать не только при оценке динамики товарооборота, но и общих затрат на производство продукции, валового сбора и т.д.

 

Пример расчета индивидуальных и агрегатных индексов.

Имеются данные об объеме продаж и ценах на продукты (табл. 1).

Таблица 1

Товары Ед. изм.     Базисный период Отчетный период Индивид, индексы
цена, руб. кол-во цена, руб. кол-во цен физиче­ского объ­ема
Яблоки кг 17.5 1,029 1,17
Яйца десяток 14,0 1,27 0,88
Молоко литр 6,5 7,2 1,11 0,96
Хлеб булка 4,5 5,0 1,11 1,18

Рассчитайте индивидуальные индексы цен и физического объема по каждому виду товаров. Опреде­лите общее изменение товарооборота, цен и физического объема реализации. Рассчитайте сумму переплаты (экономии) покупателей за счет изменения цен.

Индивидуальные индексы цен и физического объема рассчиты­ваются как отношение цены (физического объема) на каждый то­вар в отчетном периоде к цене (физическому объему) на этот то­вар в базисном периоде. Результаты расчетов заносятся в таблицу (табл. 1, графы 6, 7).

Для того, чтобы определить относительное изменение товарообо­рота, рассчитаем общий индекс товарооборота:

Общий товарооборот увеличился на 20,5%. Рассчитаем индекс цен:

В среднем количество проданных продуктов увеличилось на 16,5%.

Индекс физического объема можно также найти, используя взаимосвязь между индексами:

.

Для того чтобы найти сумму переплаты или экономии покупате­лей от изменения цен, необходимо найти разницу между числи­телем и знаменателем индекса цен:

За счет роста цен покупатели заплатили в отчетном периоде за один и тот же объем продуктов на 25559 руб. больше.

Рассмотренные выше индексы используются тогда, когда показа­тель, изменение которого мы рассматриваем, может быть поле­чен произведением двух других и изменения этих двух показате­лей известны. Но в практике расчетов бывает, что абсолютны, значения этих показателей могут быть неизвестны, а известно лишь их относительное изменение и итоговый показатель. В этом случае агрегатные индексы преобразуют в средний арифметиче­ский и средний гармонический индекс, в зависимости от того, ка­кими данными мы располагаем.

 

Пример расчета среднего гармонического индекса.

В розничной торговле ведется учет изменения цен на конкретные товары и учет стоимости продан­ных товаров (табл. 2). Объем продаж в натуральном объеме не известен. Как определить е этом слу­чае индекс цен?

Таблица 2

Наименование продукции Реализация продукции в базисном периоде, тыс. руб. Реализация продукции в отчетном периоде, тыс. руб. Изменение цен в текущем периоде по сравнению с базисным, %
Изделие 1 +4,0
Изделие 2 +2,8
Изделие 3 -2,0

 

- средний гармонический индекс цен. Таким образом, цены в отчетном периоде по сравнению с базисным увеличились на 3,3%.

На основании имеющихся данных можно рассчитать индекс товарооборота:

Общий товарооборот снизился на 3%.

Используя взаимосвязь между индексами, можно рассчитать индекс физического объема:

Результатом повышения цен явилось снижение объема продаж. Количество проданных изделий сократилось на 6,1%.

 

Пример расчета среднего арифметического индекса.

Имеются следующие данные о затратах на производство продукции (табл. 3). Как изменится объем произведенной продукции в стоимостном выражении?

Таблица 3

Наименование продукции Общие затраты на производство про­дукции в базисном периоде, тыс. руб. Изменение физического объема произве­денной продукции в отчетном периоде по сравнению с базисным, %
Изделие А +2,5
Изделие В +3,6
Изделие С -2,1

 

где z0, z1 - себестоимость единицы продукции в базисном и отчетном периоде соответственно.

Физический объем произведенной продукции в целом по предприятию увеличился на 1,8%.

 








Дата добавления: 2016-12-16; просмотров: 2557;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.