Строение коллоидной мицеллы и электрические свойства коллоидных систем

Коллоидные частицы имеют малые размеры и могут существовать во взвешенном состоянии неограниченное время. Это определяет кинетическую устойчивость коллоидных систем. С другой стороны, большая поверхность раздела коллоидной частицы определяет избыточное поверхностное натяжение и тенденцию к «слипанию» коллоидных частиц, которая уменьшает энергетическую нестабильность коллоидных систем.

Стабилизация коллоидных систем происходит за счет адсорбции молекул дисперсионной среды или ионов электролита, находящегося в растворе. На границе коллоидной частицы формируется двойной электрический слой, коллоидные частицы приобретают одинаковый заряд, что препятствует их «слипанию».

Ионы, которые формируют заряд коллоидной частицы, называются потенциалобразующими ионами. К ним притягиваются ионы с противоположным зарядом – противоионы, которые располагаются в адсорбционном и диффузионном слоях мицеллы.

Между адсорбционным и диффузионным слоями происходит ионный обмен. Коллоидная частица заряжена, а мицелла электронейтральна.

Пример. Строение мицеллы коллоидной частицы иодида серебра.

Реакция образования иодида серебра может быть представлена в виде:

KI (избыток) + AgNO3 AgI + KNO3

Строение мицеллы: {m[AgI] nI (n-x)K+} xK+

где “m” – число молекул иодида серебра в ядре; “n” – число анионов в первом адсорбционном слое коллоидной частицы; n + x = m; обычно m >> n.

Если в избытке находится нитрат серебра, то на поверхности ядра коллоидной частицы в первую очередь группируются ионы серебра, достраивая кристаллическую решетку твердой фазы, а в качестве противоионов выступают нитрат-анионы.

На поверхности ядра мицеллы возникает электрический межфазный потенциал (j - потенциал), который уменьшается при увеличении расстояния от поверхности ядра за счет адсорбции противоионов.

  _ А _ j _ _ _ _ x + d B r     (толщина адсорбционного слоя) Если поместить коллоидную частицу в электрическое поле, то противоионы диффузного слоя отрываются от коллоидной частицы и перемещаются в сторону соответствующего электрода, а коллоидная частица – в противоположную сторону. В ее составе остается часть диффузионного слоя (линия АВ показывает границу поверхности скольжения).

Потенциал коллоидной частицы на поверхности скольжения называется электрокинетическим потенциалом или x(зета)-потенциалом.

x-потенциал является мерой устойчивости коллоидных систем: если ½x½< 30 mV, происходит коагуляция (разрушение) коллоидных частиц.

Введение индифферентных сильных электролитов в коллоидные растворы приводит к уменьшению величины x-потенциала в связи с увеличением концентрации противоионов и сжатием диффузного слоя. В том случае, когда концентрация индифферентного электролита достаточно велика, возможно достижение изоэлектрического состояния (x=0).

При введении сильного электролита, содержащего одноименные ионы, происходит дополнительная адсорбция потенциалобразующих ионов на поверхности коллоидной частицы, что приводит к увеличению x-потенциала. После достижения максимально возможной адсорбции электролит, содержащий одноименные ионы, начинает действовать так же, как и индифферентный электролит, то есть x-потенциал уменьшается и после достижения критической величины наступает коагуляция коллоидных частиц.

Коагулирующая способность электролитов характеризуется величиной порога коагуляции – минимальной концентрацией электролита, которая вызывает коагуляцию коллоидного раствора. Порог коагуляции уменьшается с увеличением заряда коагулирующего иона (иона, знак заряда которого аналогичен знаку заряда противоиона коллоидных частиц). Для моно-, ди- и трехзарядных ионов отношение их порогов коагуляции составляет 1:11:72.

 

В некоторых случаях процесс коагуляции является обратимым. Процесс обратной трансформации коагулята в коллоидный раствор называется пептизация или дезагрегация.

 

Устойчивость лиофобных золей увеличивается при добавлении небольших количеств растворов высокомолекулярных соединений (например, растворов желатины, таннина и др.). Защитное действие растворов высокомолекулярных соединений связано с образованием адсорбированного защитного слоя на поверхности коллоидной частицы. Характеристикой защитного действия является защитное числоминимальное количество (мг) твердого вещества, которое предотвращает коагуляцию 10 мл коллоидного раствора при добавлении сильного электролита в количестве, определяемом порогом коагуляции.

 

Условиями образования коллоидных растворов являются нерастворимость дисперсной фазы в дисперсионной среде и присутствие стабилизатора.

 








Дата добавления: 2016-11-22; просмотров: 1412;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.