Рівняння першого закону термодинаміки для потоку

 

Дотепер ми розглядали тільки системи, речовина в який не переміщалася (як ціле) у просторі; однак варто підкреслити, що перший закон ТТД має загальний характер і справедливий для будь-яких систем – і нерухомих і тих, які рухаються.

Розглянемо плин рідини або газу в каналі довільної форми. Розглянемо лише одномірні стаціонарні потоки, у яких параметри залежать тільки від однієї координати, яка збігається з напрямком вектора швидкості, і не залежать від часу.

Умова нерозривності плину в таких потоках полягає в однаковості масової витрати m робочого тіла в будь-якому перетині

 

  (14.1)

 

Розглянемо термодинамічну систему, представлену на (мал.14.1).

Тут індекси I і II відносимо до двох перетинів потоку. Проаналізуємо, з чого складається для потоку фігу- руюча в цьому рівнянні величина роботи, яка вироблена потоком газу, який рухається.По трубопроводу I робоче тіло з параметрами Т1, p1, v1 подається з швидкістю c1 у темпомеханічний агрегат 2 (двигун, турбіна,

Мал.14.1 парогенератор, компресор і т.д.). Кожен 1кг робочого тіла одержує від зовнішнього джерела теплоту q і робить технічну роботу Lтехн, наприклад приводячи в рух ротор турбіни, а потім віддаляється через вихлопний патрубок 3 зі швидкістю c2, маючи параметри Т2, p2, v2. (Корисну роботу потоку, яку здійснює він, за допомогою рухливих елементів агрегату над зовнішнім об'єктом називають технічною роботою.

Виділимо об'єм робочого тіла між перетинами I і II, замінимо дію відкинутих частин потоку відповідними силами.

Визначимо роботу, яку здійснює поток. Для того, щоб ввести в ділянку, яка розглядається, через перетин I в одиницю часу порцію газу (рідини) масою m, потрібно затратити деяку роботу, яка витрачається на те, щоб виштовхнути з розглянутої ділянки каналу таку ж порцію газу і звільнити тим самим місце для нової порції газу, що надходить. Оскільки р1=const, кожен кг робочого тіла може зайняти об'єм V1 лише при витраті роботи, рівної

, (14.2)

Підкреслимо ще раз, що - це робота вштовхування, яку потрібно підвести до розглянутої порції газу m, щоб «вштовхнути» її в розглянуту ділянку каналу через перетин F1 (цьому протидіє сила тиску газу, що уже знаходиться в розглянутій ділянці каналу, яка по абсолютній величині теж дорівнює р1, але спрямована назустріч потоку – вона перешкоджає руху нашого гіпотетичного поршня).

Для того, щоб вийти в трубопровід 3, робоче тіло повинне виштовхнути з нього таку ж кількість робочого тіла, яке раніше знаходилося в ньому, переборовши тиск р2, тобто кожен кг, займаючи об'єм V2, повинний зробити визначену роботу виштовхування

, (14.3)

Справді, оскільки через перетин I у розглянуту ділянку каналу уже «вштовхнута» порція газу масою m, відповідно до принципу нерозривності очевидно, що така ж порція газу повинна бути «виштовхнута» з розглянутої ділянки каналу через перетин ІІ. Якої-небудь додаткової роботи для проштовхування газу через перетин ІІ затрачати не потрібно – через перетин ІІ газ проштовхується за рахунок тієї роботи, яка витрачена на вштовхування газу через перетин 1. Однак газ, який виходить через перетин ІІ, у свою чергу робить роботу, яка витрачається на проштовхування газу, який заповнює канал за перетином ІІ. Саме ця робота і називається роботою виштовхування.

З 14.1 випливає, що при протіканні газу з витратою m через ділянку каналу між довільно обраними перетинами I і II за одиницю часу відбувається робота, яка дорівнює алгебраїчній сумі роботи , яку робить поршень 2, і роботи , яка виробляється над поршнем (ця робота зветься роботою проштовхування)

, (14.4)

Робота проштовхування – перша частина роботи, яку робить потік.

Далі, якщо швидкість потоку в перетині 11 (С2) відрізняється від швидкості в перетині 1 (c1), то частина роботи розширення буде витрачена на збільшення кінетичної енергії робочого тіла в потоці, рівну

, (14.5)

Це – друга складова частина роботи, яка здійснюється потоком.

Якщо перетини I і II розташовані на різній висоті (відповідно Z1 і Z2), то повинна бути витрачена робота для того, щоб підняти розглянуту порцію газу Z1 і Z2. Ця робота дорівнює зміні потенційної енергії порції газу масою m/

  (14.6)

Це – третя складова частина роботи, яка здійснюється потоком.

У загальному випадку потік може також робити інші види роботи на шляху між перетинами каналу I і II, наприклад обертати колесо турбіни, або, якщо це потік електропровідної рідини в поперечному магнітному полі, віддавати електроенергію в зовнішній ланцюг унаслідок магнітодинамічного ефекту і т.д. Усі ці види роботи, що звуться технічноюроботою, позначимо Технічна робота може не тільки відбиратися від потоку, але підводитися до потоку; можна привести приклади, зворотні названим: потік може нагнітатися відцентровим насосом, перекачуватися електромагнітним насосом і т.д.

Технічна робота є четвертою складовою частиною роботи, яку робить потік.

Нарешті, п’ятою складовою частиною роботи потоку є робота, яка затрачується на подолання сил тертя на стінках каналу. Позначимо цю роботу .

Отже, робота, що робить потік газу, який рухається, (рідини), у загальному випадку записується таким чином:

, (14.7)

чи

 

, (14.8)

Підставляючи ці співвідношення (14.7) і (14.8) у рівняння I-го закону термодинаміки, отримаємо:

  (14.9)

чи

, (14.10)

У диференціальній формі це рівняння запишеться у виді

dq = du + d(pv) + cdc + gdz + dlтех + dlтр, (14.11)

З обліком того, що h = u + p v, отримаємо

, (14.12)

і

dq = dh + cdc + gdz + dlтех + dlтр, (14.13)

Рівняння (14.12) і (14.13) являють собою запис першого закону термодинаміки для потоку.

Порівняємо тепер диференціальне рівняння I-го закону ТТД, записане в самому загальному виді для довільної системи, з окремим випадком цього рівняння для потоку. Перше з цих рівнянь, як відомо, має вид

dq = du + pdv, (14.14)

друге –

dq = du + d(pv) + cdc + gdz + dlтех + dlтр, (14.15)

Варто мати на увазі, що рівняння (14.14) написано для випадку, коли єдиним видом роботи є робота розширення.

Далі важливо помітити, що у випадку плину з тертям робота потоку, затрачаючись на подолання тертя, цілком перетворюється в теплоту, сприймаєму потоком. Тому величина q, у лівій частині співвідношень (14.14) і (14.15), при плині з тертям являє собою суму теплоти, яка підводиться до потоку ззовні (позначимо її qзов), і теплоти тертя qтр:

q = qзов + qтр, (14.16)

Тоді рівняння (14.14) і (14.15) можна переписати в наступному виді:

dqзов + dqтр = du + pdv, (14.17)

 

dqзов + dqтр = du + d(pv) + cdc + gdz + dlтехн + dlтр (14.18)

Тому що теплота тертя дорівнює роботі тертя dqтр=dlтр, то ці величини у виразі (14.18) взаємно знищуються і воно здобуває вид:

dqзов = du + d(pv) + cdc + gdz + dlтехн , (14.19)

чи, що те ж саме

dqзов = dh + cdc + gdz + dlтехн , (14.20)

 

У рівнянні (14.17) величина dqтр зберігається, тому що вона є лише однією зі складових частин роботи розширення pdv.

По своїй суті рівняння (14.14) і (14.15) ідентичні – вони виражають перший закон термодинаміки. На цій підставі можна дорівняти праві частини цих рівнянь і після перетворень маємо:

pdv = d(pv) + cdc + gdz + dlтехн + dlтр, (14.21)

 

Це співвідношення показує, що робота, яка витрачається на проштовхування потоку, d(pv), на зміну кінетичної енергії потоку, cdc, на зміну потенційної енергії потоку, gdz, на подолання сил тертя, dlтр, і технічна робота dlтехн відбуваються за рахунок роботи розширення газу (чи рідини), що рухається в потоці, pdv.

Іншими словами вираз першого закону термодинаміки для потоку можна сформулювати в таким чином: теплота підведена до потоку робочого тіла ззовні, витрачається на збільшення ентальпії робочого тіла, виробництво технічної роботи і збільшення кінетичної і потенційної енергії потоку.

Сопла і дифузори

Сопла і дифузори – спеціально спрофільовані канали, призначені для прискорення або гальмування потоку. Технічна робота в них не відбувається, тому за умови горизонтального витікання перший закон ТТД для потоку можна записати у виді

, (14.22)

З іншого боку, до об'єму робочого тіла, що рухається в потоці, застосовний також і вираз першого закону ТТД для закритої системи:

, (14.23)

Дорівнявши праві частини двох останніх рівнянь, одержимо:

, (14.24)

З (14.24) видно, що dc і dp завжди мають протилежні знаки. Отже, збільшення швидкості плину в каналі (dc >0) можливо лише при зменшенні тиску в ньому (dp<0). Навпаки, гальмування потоку (dc<0) супроводжується збільшенням тиску (dp >0).

Канали, у яких відбувається розгін газу, звуться соплами. Канали, призначені для гальмування потоку, звуться дифузорами.

Тому що довжина сопла і дифузора невелика, а швидкість плину середовища в них досить висока, то теплообмін між стінками каналу ісередовищем при малому часі їх проходження настільки незначний, що в більшості випадків їм можна зневажити і вважати процес витікання адіабатним (. При цьому рівняння першого закону ТТД для потоку приймає вид:

, (14.25)

Отже, прискорення адіабатного потоку відбувається за рахунок зменшення ентальпії, а гальмування потоку викликає збільшення ентальпії.

 








Дата добавления: 2016-10-17; просмотров: 1524;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.