К основным и наиболее часто применяемым методам ре­гистрации относятся следующие: ионизационные, оптические (сцинтилляционные), химические и фотографические.

Ионизационный методоснован на регистрации эффекта ионизации, т. е. на измерении величины заряда ионов, возни­кающих под действием ионизирующего излучения. Измерить ионизационный эффект можно при помощи электрического поля, которое препятствует рекомбинации ионов и придает им направленное движение к соответствующим электродам.

В качестве детекторов используют ионизационные камеры, пропорциональные счетчики, счетчики Гейгера—Мюллера, полупроводниковые детекторы и др. Эти детекторы, кроме полупроводниковых, представляют собой наполненные газом баллоны с двумя вмонтированными электродами. К электро­дам подведено напряжение постоянного тока. Детектор вклю­чается в электрическую цепь. При прохождении ионизирую­щей частицы через газовую среду образуются ионы, которые собираются на электродах. Положительные ионы движутся к катоду, отрицательные — к аноду. В электрической цепи образуется ионизационный ток, который регистрируется измерителем тока. По значению этого тока можно судить об интенсивности излу­чения или отсчитывать число зарегистрированных частиц. Протекание тока наблюдается до тех пор, пока на газ дей­ствует излучение. В противном случае ток в цепи не проте­кает, так как газ является изолятором.

Взаимодействуя с веществом, ядерное излучение наряду с ионизацией производит возбуждение атомов и молекул. Через некоторое время (в зависимости от вещества) возбуж­денные атомы и молекулы переходят в невозбужденное со­стояние с выделением энергии во внешнюю среду. У некото­рых веществ (сернистый цинк, йодистый натрий, антрацен, стильбен, нафталин и др.) такой переход сопровождается испусканием энергии возбуждения в виде квантов видимого инфракрасного и ультрафиолетового света. Внешне это про­является в виде вспышек света — сцинтилляций, которые можно зарегистрировать с помощью соответствующих прибо­ров. На регистрации сцинтилляций, возникающих в определенных веществах при облучении их ионизирующими излу­чениями, и основаны оптические методы.

Принцип работы сцинтилляционного детектора следующий: под действием излучений происходит ионизация и возбуждение атомов. При переходе атомов из ионизированных и возбужденных состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя

В настоящее время известно очень много различных сцинтилляторов – жидких, твердых, газообразных и в виде порошков различной плотности. Это позволяет подобрать не­обходимый детектор для наиболее эффективной регистрации любого ионизирующего излучения в широком диапазоне энер­гий.

Химические методы основаны на том, что часть поглощен­ной энергии излучения переходит в химическую, что вызывает цепь химических превращений. Определение наличия излуче­ния, его интенсивности производится по выходу химических реакций. Например, при облучении водного раствора FeSO4 ионы двухвалентного железа Fe2+ превращаются в ионы трехвалентного железа Fe3+. Одновременно при этом изме­няется электрический потенциал и окраска раствора, что мож­но легко определить соответствующими способами.

Отметим, что при использовании химических методов сле­дует подбирать в качестве детекторов такие вещества, хими­ческие изменения в которых пропорциональны дозе или ин­тенсивности ионизирующего излучения

Фотографические методы основаны на способности излу­чения разлагать галогениды серебра AgCl или AgBr, входя­щие в состав чувствительных фотоэмульсий, до металлическо­го серебра. В результате такого взаимодействия вдоль трека (следа прохождения) альфа- и бета-частиц выделяются зерна серебра и при проявлении фотопластинки виден след пробега ядерных частиц — почернение. По характеру трека можно определить вид, интенсивность и энергию излучения.

В заключение отметим, что большое разнообразие методов регистрации и детекторов связано с причинами различного характера взаимодействия излучения с веществом и различ­ным пробегом. Поэтому невозможно сконструировать универ­сальный детектор, который одинаково хорошо регистрировал бы гамма-кванты, альфа- и бета-частицы. Легче всего заре­гистрировать проникающее гамма-излучение. Для этого хо­роши счетчики Гейгера—Мюллера, но более эффектны сцинтилляционные детекторы с кристаллическими сцинтилляторами большой плотности.

Для регистрации бета-излучения применяют жидкие или пластмассовые сцинтилляторы или ионизационные детекторы с очень тонкими стенками. Альфа-излучение из-за малого пробега в веществе регистрировать очень тяжело. В этом случае чаще используют ионизационные методы, но детекторы особых конструкций — открытые газовые или специальные полупроводниковые детекторы.

При регистрации ионизирующих излучений необходимо помнить о требованиях к измеряемым образцам. Особых тре­бований не существует в случае гамма-излучающих образцов. В образцах, которые испускают бета-частицы, регистрация будет происходить только с верхнего тонкого слоя; все осталь­ное бета-излучение поглощается в самом образце, не достигая детектора. Поэтому бета-излучающие образцы должны быть или очень тонкие или бесконечно толстые. Радиометрия аль­фа-радионуклидов возможна только с очень тонкой пленки, В этом случае перед измерением необходимо провести радио­химическую* обработку образца; его предварительно сжигают, растворяют, выделяют альфа-излучающий радионуклид, ко­торый осаждают на подложку тонким слоем.

Также отметим, что активность определяют, регистрируя радиоактивное излучение, которое сопровождает распад. Но так как для каждого вида излучения необходим отдельный детектор, активность можно определить только в том случае, когда известен состав радионуклидов в образце и число соот­ветствующих частиц или квантов, которые излучаются при одном акте распада. Например, цезий-137, который распа­дается, излучая бета-частицу (электрон) и гамма-квант, мож­но регистрировать как бета-радиометром (с поправкой на эффективность к гамма-излучению), так и гамма-радиомет­ром. При радиометрии стронция-90 необходимо помнить, что данный радионуклид излучает только бета-частицы, причем при распаде образуется иттрий-90, который также испускает бета-частицы, поэтому в образце всегда присутствуют два этих радиоизотопа.

Устройства, предназначенные для преобразования энергии ионизирующих излучений в другие виды энергии, удобные для индикации, последующей регистрации и измерения, называются детекторами ионизирующего излучения (от латинского слова "detector" – тот, кто раскрывает, обнаруживает), но детекторы, как правило, это лишь часть комплекса аппаратуры, предназначенной для регистрации излучений. Эффект, создаваемый излучением в детекторе, должен быть преобразован в электрический ток, который может привести в действие электрическое регистрирующее измерительное устройство.

Устройства, предназначенные для регистрации действия ионизирующего излучения на детектор, называются регистраторами. Комплекты устройств – детектор и регистратор – называются радиометрами. Радиометры – приборы, предназначенные для получения информации об активности нуклидов, плотности потока и потоке ионизирующих частиц или фотонов. Разновидность радиометров представляют собой дозиметры, отградуированные в единицах дозы или мощности излучения. Дозиметры– приборы, предназначенные для получения информации об экспозиционной дозе и мощности экспозиционной дозы или (и) об энергии, переносимой ионизирующим излучением или переданной им объекту, находящемуся в поле его действия.

Существует электрофизическая аппаратура, которая позволяет расшифровать в деталях свойства излучения, проходящего через детектор. Приборы, предназначенные для анализа свойств ионизирующих излучений (радионуклидный состав, энергия, вид излучения, др.), называются анализаторами. В настоящее время различные типы анализаторов принято называть спектрометрами.Спектрометры– приборы, предназначенные для получения информации о спектре распределения ионизирующего излучения по одному или более параметрам, например, по энергии квантов или частиц в потоке излучения.

Иногда регистрация излучения сводится к регистрации следов прохождения отдельных ионизирующих частиц через вещество. По длине следа обычно определяют энергию зарегистрированных частиц, а по виду следа – вид частиц. Такие детекторы принято называть следовыми камерами, а также это могут бытьтолстослойные фотоэмульсии.








Дата добавления: 2016-08-08; просмотров: 1097;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.