КРАТКИЙ ОЧЕРК ИСТОРИИ АНАТОМИИ 61 страница

Афферентные волокна боковых канатиков оканчиваются в ядрах ствола мозга, мозжечка и таламуса (nucleus ventralis posterior). Итак, в тала­мусе лежат клетки третьих нейронов всего кондуктора интероцептивного анализатора, связанного как с симпатической, так и с парасимпатической иннервацией. Поэтому в таламусе происходит замыкание интероцептивных рефлекторных дуг и возможен «выход» на эфферентные пути.

Замыкание для отдельных рефлексов может происходить и на других, более низких уровнях. Этим объясняется автоматическая, подсознательная, деятельность органов, управляемых вегетативной нервной системой. Корко­вый конец интероцептивного анализатора, кроме постцентральной извили­ны, находится в премоторной зоне, где заканчиваются афферентные волокна, идущие от таламуса. Интероцептивные импульсы идут по внутренностным нервам, достигают также коры пред- и постцентральных извилин в зонах кожно-мышечной чувствительности.

Возможно, что эти зоны содержат первые корковые нейроны эфферент­ных путей вегетативной нервной системы, осуществляющие кортикальную регуляцию вегетативных функций. С этой точки зрения эти первые кор­ковые нейроны могут рассматриваться как своего рода аналоги пирамид­ных клеток, являющихся первыми нейронами пирамидных путей.

Как видно из вышеизложенного, интероцептивный анализатор в струк­турном и функциональном отношениях сходен с экстероцептивными анали­заторами, однако площадь коркового конца интероцептивного анализатора значительно меньше по сравнению с экстероцептивными. Этим объясняется его «грубость», т. е. меньшая тонкость, точность дифференцировок по отно­шению к сознанию.

На всех уровнях центральной нервной системы: в спинном мозге, моз­жечке, в таламусах и коре большого мозга — имеется весьма тесное перекры­тие путей и зон представительства анимальных и вегетативных органов. Висцеральные и соматические афферентные импульсы могут адресоваться к одному и тому же нейрону, «обслуживающему» и вегетативные, и сомати­ческие функции. Все это обеспечивает взаимодействие анимальной и вегета­тивной частей единой нервной системы. Высшая интеграция анимальных и вегетативных функций осуществляется в коре головного мозга, особенно в премоторной зоне.

До сих пор были рассмотрены афферентные пути, связанные с опреде­ленной специализацией нейронов, проводящие те или иные специфические импульсы (тактильные, проприоцептивные, интероцептивные). Вместе с прово­дящими путями от органов зрения, слуха, вкуса, обоняния они составляют так называемую специфическую афферентную систему. Наряду с этим сущест­вует афферентная система, представленная так называемой ретику­лярной формацией, относящаяся к неспецифическим структурам. Ретикуляр­ная формация воспринимает все без исключения импульсы: болевые, свето­вые, звуковые и т. д. Йо в то время как специфические импульсы от каждого органа чувств поступают по специальным проводниковым системам в кору соответствующих анализаторов, в ретикулярной формации не су­ществует специализации нейронов; одни и те же нейроны воспринимают различные импульсы и передают их во все слои коры. Таким образом, ретикулярная формация составляет вторую афферентную систему.

ВТОРАЯ АФФЕРЕНТНАЯ СИСТЕМА ГОЛОВНОГО МОЗГА —

РЕТИКУЛЯРНАЯ ФОРМАЦИЯ, FORMATIO RETICULARIS

Под этим названием подразумевают совокупность структур, расположен­ных в центральных отделах мозгового ствола и отличающихся следующими морфологическими особенностями:

1. Нейроны ретикулярной формации имеют отличающее их от других нейронов строение: дендриты их ветвятся очень слабо, нейриты, наоборот, делятся на восходящую и нисходящую ветви, которые отпускают от себя многочисленные коллатерали, благодаря чему аксон может контактировать с огромным числом нервных клеток (при длине в 2 см — с 27 500).

2. Нервные волокна идут в самых различных направлениях, напоминая под микроскопом сеть, что и послужило основанием для Дейтерса назвать ее 120 лет тому назад сетчатой, или ретикулярной, формацией.

3. Клетки ретикулярной формации местами рассеяны, а местами образуют ядра, начало выделению которых положил В. М. Бехтерев, описавший ретикулярное ядро покрышки моста (niicleus reticularis tegmenti pontis).

В настоящее время описано 96 отдельных ядер.

Область распространения ретикулярной формации точно еще не уста­новлена. На основании физиологических данных, она расположена по всей длине мозгового ствола и занимает центральное положение в продолгова­том мозге, мосте, среднем мозге, в гипоталамической области и даже в медиальной части таламусов. Как филогенетически более древняя ретикуляр­ная формация локализуется в покрышке ствола головного ■ мозга.

Связи ретикулярной формации. Ретикулярная формация связана со всеми отделами центральной нервной системы. Различают: 1) ретикулопетальные связи, идущие от всех отделов головного мозга; 2) ретикулофугальные связи, идущие к серому веществу и ядрам головного и спинного мозга; 3) ретикуло- ретикулярные связи (восходящие и нисходящие) между различными ядрами самой ретикулярной формации.

Функция. В настоящее время считают, что ретикулярная формация яв­ляется «генератором энергии» и регулирует процессы, совершающиеся в других отделах центральной нервной системы, включая и кору большого мозга. Особенно важно, что ретикулярная формация оказывает общее (генерали­зованное) неспецифическое активизирующее воздействие на всю кору голов­ного мозга, (П. К. Анохин), что обеспечивается наличием восходящих про­водящих путей от сетчатой формации ко всем долям мозговых полушарий. Поэтому ее называют также восходящей активирующей ретикулярной сис­темой. Будучи связана коллатералями аксонов своих клеток со всеми про­ходящими через ствол мозга специфическими афферентными проводящими путями, она получает от них импульсы и несет неспецифическую информа­цию в мозговую кору.

В результате через мозговой ствол проходят в кору мозга две аф­ферентные системы: одна специфическая — это все специфические чувствитель­ные проводящие пути, несущие импульсы от всех рецепторов (экстеро- интеро- и проприоцепторов) и заканчивающиеся на телах клеток преиму­щественно IV слоя коры; другая — неспецифическая, образованная ретику­лярной формацией и заканчивающаяся на дендритах всех слоев коры. Взаимодействие обеих этих систем обусловливает окончательную реакцию корковых нейронов. Таково современное представление о двух афферентных системах головного мозга.

Учитывая столь большое значение ретикулярной формации и ее влия­ние на кору мозга, некоторые зарубежные исследователи преувеличивают ее рбль, считая, что она, располагаясь в центральных частях мозга, состав­ляет особую «центрэнцефалическую» систему, выполняющую функцию созна­ния и интеграции. Стремление спустить высший уровень интеграции из коры мозга в подкорку не имеет под собой фактических оснований и является антиэволюционным, так как в процессе эволюции наибольшего развития достигает наивысший отдел мозга, т. е. его плащ, а не ствол. Это стрем­ление противоречит материалистической идее нервизма и отражает фрейдизм — идеалистическое учение о ведущей роли не коры, а подкорки. Строение и функция ретикулярной формации полностью еще не раскрыты и состав­ляют предмет дальнейших изысканий.

ЭФФЕРЕНТНЫЕ (НИСХОДЯЩИЕ) ПРОВОДЯЩИЕ ПУТИ

Нисходящие двигательные пути идут от коры головного мозга — tractus corticonuclearis et corticospinalis (пирамидная система), от подкорковых ядер переднего мозга — экстрапирамидная система и от мозжечка.

Корково-спинномозговой (пирамидный) путь, или пирамидная система

Клеточное тело первого нейрона лежит в предцентральной извилине коры большого мозга (гигантские пирамидные клетки). Аксоны этих клеток через corona radiata спускаются во внутреннюю капсулу (колено и перед­ние две трети задней ножки), далее в basis pedunculi cerebri (срединный ее отдел), а затем в pars basilaris моста и продолговатый мозг. Здесь часть волокон пирамидной системы вступает в связь с ядрами черепных нервов. Эта часть пирамидной системы, проходящая через колено внутрен­ней капсулы и связывающая кору большого мозга с ядрами черепных нервов, называется tractus corticonuclearis[25]. Волокна этого тракта частью переходят на другую сторону, частью остаются на своей стороне. Аксоны клеток, заложенных в ядрах черепных нервов (клеточные тела вторых ней­ронов), в составе соответственных нервов оканчиваются в скелетной мускулатуре, иннервируемой этими нервами.

Другая часть пирамидной системы, проходящая в передних двух тре­тях задней ножки внутренней капсулы, служит для связи с ядрами спинно­мозговых нервов, спускается до передних рогов спинного мозга и потому называется tractus corticospinalis. Этот тракт, пройдя в мозговом стволе до продолговатого мозга, образует в нем пирамиды. В последних пере­крещивается часть волокон tractus corticospinalis (decussatio pyramidum), которая, спускаясь в спинной мозг, ложится в боковой его канатик, образуя, tractus corticospinalis (pyramidalis) lateralis. Оставшаяся неперекрещенной часть tractus corticospinalis спускается в переднем канатике спинного мозга, об­разуя его tractis corticospinalis (pyramidalis) anterior (см.рис. 270).

Волокна этого пучка постепенно по протяжению спинного мозга также переходят на другую сторону в составе commissiira alba, в результате чего весь tractus corticospinalis оказывается перекрещенным. Благодаря этому кора каждого полушария иннервирует мускулатуру противоположной стороны тела.

Двигательные и чувствительные перекресты, происходящие в различных отделах мозга (decussatio pyramidum, commissura alba, decussatio lemniscorum и др.), представляют, по И. П. Павлову, приспособление нервной системы, направленное на сохранение иннервации при повреждении мозга в каком- либо месте одной его стороны. Аксоны, составляющие tractus corticospi­nalis (pyramidalis), вступают в связь с двигательными клетками передних рогов спинного мозга, где начинается второе звено[26]. Аксоны лежащих здесь клеток идут в составе передних корешков и далее мышечных нервов к скелетной мускулатуре туловища и конечностей, иннервируемой спинно­мозговыми нервами. Таким образом, tractus corticonuclearis и tractus corticospinalis составляют единую пирамидную систему, служащую для сознательного управления скелетной мускулатурой (рис. 353). Эта система особенно развита у человека в связи с прямохождением и сознательным пользованием своим аппаратом движения в процессах труда и членораз­дельной речью.

Нисходящие пути подкорковых ядер переднего мозга —

экстрапирамидная система

Пирамидная система, как уже отмечалось выше, начинается в коре большого мозга (V слой, пирамидные клетки). Экстрапирамидная система (рис. 354, 355) слагается из подкорковых образований. В ее состав входят

Рис. 354. Связи стриопаллидар- ной системы и экстрапирамид- ная система.

6 — 4s — поля премоторной и двигатель­ной зоны коры мозга; 1 — волокна, восходящие из таламуса в кору; 2 — путь от «тормозных» участков поля 4s в хвостатое ядро (N. caud); Gl. pall. — бледный шар; N. h. — гипотала- мическое ядро; N. ruber — красное ядро; 5. «.— черная субстанция; F. г.— ретикулярная формация продолговатого мозга. Стрелки указывают направление и «станцию назначения» импульсов.

corpus striatum, thalamus, nucleus hypothalamicus posterior, niicleus ruber, substantia nigra и связывающие их проводники белого вещества. Экстра- пирамидная система отличается от пирамидной по своему развитию, строению и функции. Она является старейшим в филогенетическом отношении моторно­тоническим аппаратом, который встречается уже у рыб, у которых имеется еще только бледный шар, pallidum (paleostriatum), у амфибий появляется уже скорлупа, putamen (neostriatum). На этой стадии развития, когда пира­мидная система еще отсутствует, экстрапирамидная система является выс­

шим отделом головного мозга, воспринимающим раздражение от рецепторов органов и посылаю­щим импульсы к мускулатуре через автоматические механизмы спинного мозга. В результате воз­никают сравнительно простые дви­жения (автоматизированные). У млекопитающих по мере развития переднего мозга и его коры об­разуется новая кинетическая си­стема — пирамидная, соответст­вующая новой форме двигатель­ных актов, связанных со все боль-

Рис. 355. Схема экстрапирамидной системы.

се —кора мозжечка; cl — claustrum; N. h.— ги- поталамическое ядро; nd — nucl. dentatus cere­belli; nr — nucl. ruber; pa — pallidum; sn — substantia nigra; — striatum (nucl. caudatus и putamen); th — thalamus; 1 — tr. corticostria- lis; 2 — fibrae thalamopallidales; 3 — fibrae striop- pallidales; 4,5 — связи с substantia nigra и nucl. ruber; 6,8 — эфферентные волокна гипоталами- ческого ядра; 7 — волокна pedunculus cerebellaris superior; 9 — эфферентные волокна substantia nigra; 10 — tr. rubrospinalis.

шей специализацией небольших групп мышц. В результате у человека в полной мере развиваются две системы:

1. Пирамидная система — филогенетически более молодая, представлена экранными центрами коры, ведающими сознательными движениями человека. Через пирамидную систему осуществляется также в движениях корковая деятельность, основанная на условных рефлексах.

2. Экстрапирамидная система — филогенетически более старая, состоящая из подкорковых ядер. У человека она играет подчиненную роль и осу­ществляет высшие безусловные рефлексы, поддерживая тонус мускулатуры и автоматически регулируя ее работу (непроизвольная автоматическая иннер­вация скелетной мускулатуры). Эта автоматическая регуляция мышц осу­ществляется благодаря связям всех компонентов экстрапирамидной системы между собой и с niicleus ruber, от которого идет нисходящий двигатель­ный путь к передним рогам серого вещества спинного мозга, tractus rubrospinalis. Этот тракт начинается в клетках красного ядра, переходит через срединную плоскость на уровне верхних холмиков крыши среднего мозга, образуя вентральный перекрест (decussatio ventralis tegmenti), и спу­скается через мозговой ствол в боковые канатики спинного мозга, после чего заканчивается на двигательных нейронах передних рогов серого вещества. Таким образом, экстрапирамидная система действует на спинной мозг через красное ядро, которое составляет важнейшую часть этой системы.

К работе экстрапирамидной системы имеют отношение нисходящие мозжечковые пути, а также ретикулярно-спинномозговой путь, которому в настоящее время придается большое значение в регуляции двигательной активности спинного мозга.

Нисходящие двигательные пути мозжечка

Мозжечок принимает участие в контроле двигательных нейронов спин­ного мозга (мышечная координация, поддержание равновесия, сохранение мышечного тонуса и преодоление инерции и силы тяжести). Это осуществляется с помощью tractus cerebellorubrospinalis (см. рис. 352). Клеточное тело первого звена этого пути лежит в коре мозжечка (грушевидные ней- роциты). Их аксоны заканчиваются в nucleus dentatus cerebelli и, возможно, в других ядрах мозжечка, где начинается второе звено. Аксоны вторых нейронов идут через верхние мозжечковые ножки к среднему мозгу и окан­чиваются в niicleus ruber. Здесь помещаются клетки третьего звена, аксоны которых в составе tractus rubrospinalis, переключившись в двигатель­ных нейронах передних рогов спинного мозга (четвертое звено), достигают скелетной мускулатуры.

Нисходящие пути коры большого мозга к мозжечку

Кора большого мозга, ведающая всеми процессами организма, держит в своем подчинении и мозжечок как важнейший проприоцептивный центр, связанный с движениями тела. Это достигается наличием специального нисхо­дящего пути от коры большого мозга к коре мозжечка — tractus corti- copontocerebellaris (см. рис. 352).

Первое звено этого пути состоит из нейронов, клеточные тела которых заложены в коре большого мозга, а аксоны спускаются к ядрам моста, nuclei (proprii) pontis. Эти нейроны составляют отдельные пучки, которые соответственно различным долям мозга называются tractus fron- topontinus, occipitopontinus, temporopontinus et parietopontinus. В ядрах моста


начинаются вторые нейроны, аксоны которых образуют tractus роп- tocerebellaris, идущий на противоположную сторону моста, и в составе средних мозжечковых ножек он достигает коры полушарий мозжечка (neo­cerebellum).

Таким образом, устанавливается связь между корой большого мозга и полушариями мозжечка. (Полушария головного мозга связаны с проти­воположными полушариями мозжечка.) Оба эти отдела головного мозга являются более молодыми и в своем развитии взаимосвязаны. Чем силь­нее развиты кора и полушария большого мозга, тем сильнее развиты кора и полушария мозжечка. Так как связь этих отделов головного мозга осуществляется через мост, то и степень развития последнего определяется развитием мозговой коры.

Следовательно, три пары ножек мозжечка обеспечивают его многосто­ронние связи: через нижние ножки он получает импульсы из спинного мозга и продолговатого мозга, через средние — из коры полушарий боль­шого мозга; в составе верхних ножек проходит главный эфферентный путь мозжечка, по которому мозжечковые импульсы передаются на клетки передних рогов спинного мозга. Связь полушарий головного мозга с полушариями мозжечка, т. е. с его новой частью (neocerebellum), пере­крестная, связь же червя, т. е. старой части мозжечка (paleocerebellum), со спинным мозгом главным образом прямая, гомолатеральная.


УЧЕНИЕ ОБ ОРГАНАХ ЧУВСТВ (эстезиология). Organa sЈnsuum

ОБЩИЕ ДАННЫЕ

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощу­щений.

Показания органов чувств являются источниками представлений об окружающем нас мире. «Иначе, как через ощущения, мы ни о каких формах вещества и ни о каких формах движения ничего узнать не можем...» (Ленин В. И. Поли. собр. соч., т. 18, с. 320). Поэтому В. И. Ленин считал физиологию органов чувств одной из наук, лежащих в основе построения диалектико-материалистической теории познания.

Процесс чувственного познания совершается у человека по шести каналам: осязание, слух, зрение, вкус, обоняние, земнЬе тяготение. Шесть органов чувств дают человеку многообразную информацию об окружающем объек­тивном мире, которая отражается в сознании в виде субъективных образов — ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно разви­вается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздра­жения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обла­дающие повышенной возбудимостью, образуют скопления, из которых воз­никают простейшие органы чувств. В дальнейшем в зависимости от поло­жения этих клеток происходит их специализация по отношению к раздра­жителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела — к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего услож­нением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Эн­гельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений. Как учит ленинская теория отражения, ощущение — это отражение в сознании человека предметов и явлений внеш­него мира в результате их воздействия на органы чувств. Так, например, световая энергия, действуя на сетчатку глаза, вызывает нервные импульсы, которые, передаваясь по нервной системе, вызывают в нашем сознании зрительные ощущения. «...Ощущение... есть превращение энергии внешнего раздражения в факт сознания» (Ленин В. И. Пол. собр. соч., т. 18, с. 46).

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором (см. также «Морфологические основы динамической локализации функций...»). «Анали­затор — это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы» (Павлов И. П. Лекции по физиоло­гии, 1952, с. 445).

Каждый анализатор состоит из трех частей: 1) рецептор — трансформа­тор энергии раздражения в нервный процесс; 2) кондуктор — проводник нервного возбуждения и 3) корковый конец анализатора, где возбуждение воспринимается как ощущение.

Различают две группы ощущений:

1. Ощущения, отражающие свойства предметов и явлений окружающего материального мира: осязание, т. е. ощущение прикосновения и давления, температурное чувство (тепла, холода) и боль; затем ощущения слуховые, зрительные, вкусовые, обонятельные и земного притяжения.

2. Ощущения, отражающие движения отдельных частей тела и состоя­ние внутренних органов (двигательные ощущения, ощущение равновесия тела, ощущения органов).

Соответственно этому все органы чувств делят на две группы:

1. Органы внешних чувств, получающие нервные импульсы из экстеро- цептивного поля, — экстероцепторы. Их шесть: органы кожного чувства, чувства земного тяготения (гравитации), слуха, зрения, вкуса и обоняния.

2. Органы внутренних ощущений: а) получающие импульсы из проприо- цептивного поля (мышечно-суставное чувство, тесно связанное с чувством земного притяжения) — проприоцепторы; б) органы, воспринимающие нервные импульсы из интероцептивного поля (внутренностей и сосудов), — интероцепторы.

Ощущения, идущие из внутренних органов, обычно неопределенны и при нормальном состоянии этих органов не достигают сознания, сказываясь только «общим самочувствием». Вообще все внутренние процессы, регу­лируемые вегетативной нервной системой, протекают без нашего ведома и только при болезненных расстройствах дают о себе знать обычно более или менее сильной болью.

Подробно об интероцептивном анализаторе было изложено в специальной главе. Из возбуждений, идущих от проприоцептивного поля, надо упомянуть только мышечно-суставное чувство, благодаря которому воспринимается ощу­щение положения частей тела и происходит координация движений. С одной стороны, это чувство комбинируется с кожной чувствительностью (чувство стереогноза), а с другой, стоит в связи с органом гравитации, дающим ориентацию по отношению к гравитационному полю, который может быть рассмотрен также как статокинетический аппарат, обеспечивающий равно­весие тела. Нервные окончания (в мышцах, костях, сухожилиях и суставах) и проводники мышечно-суставного чувства были описаны при изложении двигательного анализатора. В данном разделе будут рассмотрены только органы, воспринимающие ощущения, получаемые из внешнего мира,— экстероцепторы.

Общий план воспринимающих приборов у всех классов животных более или менее одинаков, несмотря на последующие значительные усложнения в деталях. Основным элементом, за исключением органов кожного чувства, у наземных животных являются особые чувствительные клетки, которые в процессе развития всегда происходят из эпителия наружного листка (экто­дермы), который уже по своему положению находится в соприкосновении с окружающим миром. Каждая такая клетка на одном конце, обращенном к наружной поверхности, несет штифтик или воспринимающие волоски, а с другой стороны отдает (в органе обоняния и зрения) отросток, идущий на соединение с отростками нервных клеток проводящих нейронов.

В других органах (вкуса и слуха) чувствительная клетка, не давая центрального отростка, оплетается концевыми разветвлениями подходящего к ней афферентного нерва. Первый тип чувствительных клеток сравнительно со вторым видом нужно считать первичным. У водных животных такая форма воспринимающих элементов встречается и в кожных покровах, где эти эле­менты подвергаются увлажнению окружающей жидкостью. В коже наземных животных чувствительных клеток не бывает, и рецепторные нервные волокна оканчиваются или свободно между клетками эпителиального покрова, или же имеют на своих концах особого рода концевые тельца. В образовании органов чувств принимает также участие мезодерма, но только вторичным порядком, образуя для них защитные, поддерживающие и вспомогатель­ные приспособления. Эти приспособления, обрастающие и дополняющие чувствительные клетки, т. е. рецепторы, образуют вместе с ними перифе­рические отделы органов чувств: кожа, ухо, глаз, язык, нос. Например, зрительным рецептором являются чувствительные клетки сетчатки (палочки и колбочки), а периферическим отделом — весь глаз.

Кроме деления органов чувств на 2 группы, все анализаторы можно классифицировать с точки зрения учения И. П. Павлова о двух сигналь­ных системах следующим образом:

I. Анализаторы первой сигнальной системы (конкретно-наглядное мыш­ление) :

А. Анализаторы внешнего мира — экстероцепторы (органы кожного

чувства, слуха, зрения, вкуса, обоняния и гравитации).

Б. Анализаторы внутреннего мира организма:

1. Проприоцепторы, несущие раздражение от органов животной жизни (мышечно-суставное чувство).

2. Интероцепторы, несущие раздражение от органов растительной

жизни (внутренности, сосуды).

II. Анализаторы второй сигнальной системы (абстрактно-логическое мыш­ление) :

1. Анализаторы устной речи.

2. Анализаторы письменной речи.

Анализаторы первой и второй сигнальных систем имеют резкие ана­томические отличия. Анализаторы первой сигнальной системы обладают каждый всеми тремя компонентами (рецептор, кондуктор и корковый конец). Анализаторы второй сигнальной системы лишены своих рецепторов и кон­дукторов, а имеют только корковые концы (корковые концы речевых анали­заторов); они воспринимают свои сигналы (вторые сигналы) на базе первых сигналов, составляющих первую сигнальную систему, без которой они не функционируют. Этим подчеркивается и разделение, и объединение корко­вых концов всех анализаторов, составляющих единую кору большого мозга, где совершается «...превращение энергии внешнего раздражения в факт соз­нания» (Ленин В. И. Полн. собр. соч., т. 18, с. 46).

КОЖА (ОРГАН ЧУВСТВА ОСЯЗАНИЯ, ТЕМПЕРАТУРЫ И БОЛИ)

Кожа, cutis, образует общий покров тела, защищающий организм от внешних влияний. Она является важнейшим органом тела, выполняющим ряд существенных функций: теплорегуляцию, выделение секретов (пот и сало), а с ними и вредных веществ, дыхание (обмен газов), депо энергетических запасов. Ей приписывают и инкреторные свойства. Главная функция кожи — это восприятие разнообразных раздражений окружающей природы (прикос­новение, давление, температура и вредные раздражения). Таким образом, кожа — это сложный комплекс воспринимающих приборов с огромной поверх­ностью рецепции, достигающей площади у взрослых около 1,6 м2.

Подробное строение кожи изложено в курсе гистологии, поэтому здесь мы ограничимся лишь кратким обзором макроскопического строения.

Кожный покров человека, как и у всех позвоночных, состоит из двух слоев:

1. Поверхностный слой — эпидермис, epidermis, происходит из экто­дермы и представляет плоский многослойный эпителий, наружные слои которого ороговевают и постепенно слущиваются (особенно при некоторых заболеваниях, например при скарлатине, когда наблюдается значительное отторжение кожного эпителия — шелушение). Вследствие давления обуви или рабочих орудий образуются мозоли, представляющие местные утолще­ния рогового слоя.

2. Глубокий слой — собственно кожа, corium (dermis), развивается из мезодермы и построен из волокнистой соединительной ткани с примесью эластических волокон (от которых зависит эластичность кожи, особенно в молодом возрасте) и неисчерченных мышечных волокон. Последние распо­лагаются или в виде пучков, образуя мышцы — подниматели волос, или собираются в слои (сосок и околососковый кружок молочной железы, кожа полового члена, промежности), образуя (как, например, в мошонке) мышеч­ную оболочку, tunica dartos). На лице corium тесно связан с мимической мускулатурой.

Верхний плотный слой corium вдается в эпидермис в виде сосочков, papillae cutis, внутри которых залегают кровеносные и лимфати­ческие капилляры и концевые нервные тельца. Сосочки выступают на по­верхности кожи, образуя гребешки и бороздки кожи. На гребешках, cristae cutis, ограничивающих тонкие бороздки, sulci cutis, открываются отверстия потовых желез, откуда капли пота стекают в бороздки и сма­чивают всю поверхность кожи. На ладонной стороне кисти и подошвен­ной — стопы гребешки и бороздки образуют сложный рисунок, имеющий у каждого человека свою особую конфигурацию, что используется в антро­пологии, а также в судебной медицине для установления личности, если у данного лица были предварительно сделаны отпечатки пальцев — дакти­лоскопия.








Дата добавления: 2016-06-24; просмотров: 364;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.04 сек.