Неполное аэробное окисление органических субстратов
ЛЕКЦИЯ 13
ДЫХАНИЕ И БАКТЕРИАЛЬНЫЙ ФОТОСИНТЕЗ
1. Аэробное дыхание при усвоении органических веществ
2. Неполное аэробное окисление органических субстратов
3. Анаэробное дыхание
4. Использование энергии света
Аэробное дыхание
У микроорганизмов, использующих в энергетических процессах О2, превращения «С» начинаются с тех же реакций, которые характерны для анаэробов.
У большинства аэробов ПВК подвергается действию ферментного комплекса, включающего три фермента: один из них катализирует декарбоксилирование ПВК, второй – ее дегидрирование с переносом Н+ на НАД+, третий акцептирует ацетильную группу и высвобождает ацетил-КоА. Так происходит окислительное декарбоксилирование ПВК до ацетил-КоА.
Дальнейшее превращение ацетил-КоА проходит в серии последовательно протекающих реакций взаимопревращения ди- и трикарбоновых кислот, которые составляют цикл лимонной кислоты или цикл Кребса.В ходе реакций на промежуточных ступенях включается вода, поэтому этот цикл – цикл воды.
В результате ПВК окисляется до 2 СО2, при этом образуется 1 молекула АТФ, в 3-х местах энергия сохраняется в оторванном дегидрогеназами водороде в НАДН2 ив одном месте – в ФАДН2:
С6Н12О6 + 4АДФ + 4Ф + 8НАД+ + 2НАДФ+ + 2ФАД → 4АТФ + 8НАДН2 + 2НАДФН2 + 2ФАДН2 + 6СО2.
Отщепившийся от субстрата водород далее попадает в систему окислительно-восстановительных ферментов и переносчиков, передающих его на его на О2. Эта система называется дыхательной цепью, или цепью переноса электронов.
В соответствии со значениями Е0 различных переносчиков электроны перемещаются от более электроотрицательных систем к более положительным: НАД+, ФАД+, цитохромb, цитохром с, цитохром а, цитохромоксидаза, О2, в результате чего образуются ионы O2– . Выделенные в среду Н+ связываются ионами O2– с образованием Н2О. Таким образом, в результате полного расщепления глюкозы в клетке аэробов выделяется в среду СО2 и Н2О.
Система переноса водорода от субстрата на О2 построена таким образом, что происходит постепенное выделение энергии, заключенной в его электроне, в результате чего максимально в 3 местах выделяется энергия в количестве, достаточном для образования АТФ: первое место образования АТФ находится между НАДН2 и ФАД+, второе на уровне цитохрома си третье – на конечном этапе дыхательной цепи. Поэтому при переносе 1 молекулы водорода от НАДН2 образуется 3 молекулы АТФ. При поступлении водорода от янтарной кислоты в цикле Кребса образуется ФАДН2. Перенос этого водорода минует первый участок от НАД+ до ФАД+, в результате чего образуется только 2 молекул АТФ. Синтез АТФ из АДФ и Фн за счет энергии, выделяемой при переносе электронов от доноров с более «–» Е0 к акцепторам с более «+» Е0, – окислительное фосфорилирование.
Общее количество молекул АТФ, получаемых клеткой в аэробных условиях при усвоении одной молекулы глюкозы, 38АТФ.
Неполное аэробное окисление органических субстратов
Окисление спирта в уксусную кислоту. Уксуснокислые хемоорганогетеротрофные бактерии (Acetobacter – периокислитель и Gluconobacter – недоокислитель) получают энергию в результате неполного окисления органических веществ кислородом воздуха:
С2Н5ОН + О2 → СН3СООН + Н2О
Это Г– неспорообразующие полиморфные палочки, У Gluconobacter 3-8 полярных жгутиков, Acetobacter неподвижен или перитрих. Строгие аэробы, образуют тонкие или толстые слизистые пленки. Устойчивы к рН (оптимум рН 5-6). Живут на поверхности растений. При производстве уксуса чистые культуры уксуснокислых бактерий сначала размножают в на сусле со спиртом, а затем в чане с буковыми стружками при 300 С в течение нескольких дней. Затем стружки вместе с бактериями переносят в большой аппарат с большим количеством подкисленной стружки, а затем в генератор, в котором производят уксус (виноградный, солодовый, плодово-ягодный, спиртовый).
Уксуснокислые бактерии могут окислять и другие спирты: пропиловый в пропионовую кислоту, бутиловый – в масляную, изобутиловый – в изомасляную, шестиатомный спирт сорбит – в сорбозу, а также осуществлять неполное окисление глюкозы до глюконовой и кетоглюконовой кислот.
Уксуснокислые бактерии могут окислять этанол в уксусную кислоту, пропанол – в пропионовую кислоту, бутанол – в масляную, изобутанол – в изомасляную, сорбит – в сорбозу, глюкозы до глюконовой и кетоглюконовой кислот.
Лимоннокислое брожение.Грибы могут окислять сахар с образованием молочной, фумаровой, янтарной, яблочной, муравьиной, уксусной, щавелевой, глюконовой кислот (Aspergillus niger).
Органические кислоты, выделяемые грибами, образуются либо в реакциях цикла Кребса, либо путем преобразования кислот этого цикла. При недостатке энергетического материала продукты неполного окисления используются этими же организмами как субстрат для дыхания и полностью окисляются до СО2 и Н2О.
Процесс образования лимонной кислоты осуществляется поверхностным и глубинным способами. При поверхностном способепитательный раствор разливается в кюветы тонким слоем и плесневой гриб развивается на его поверхности. При глубинном способе брожение ведется в бродильных чанах, где питательная среда интенсивно аэрируется. После приготовления питательного раствора, его засевают спорами гриба, выращенного в споровом цехе, из расчета 350-400 тыс. спор на 1 мл среды.
При температуре 32 °С брожение идет 14-16 суток. Один 1 м2 грибной пленки образует 500-600 г лимонной кислоты.
Анаэробное дыхание
Анаэробное окисление присуще только микроорганизмам, способным переходить от аэробного образа жизни к анаэробному, используя в качестве конечного акцептора электронов О2, «N» нитратов и «S» сульфатов.
Это денифицирующие бактерии, большинство их – хемоорганотрофы. В аэробных условиях они окисляют органические вещества по циклу Кребса, в анаэробных – переключаются на нитратное дыхание с использованием конечным акцептором электронов «N» нитратов. Цитохромоксидаза замещена у них на нитратредуктазу, катализирующую перенос электронов на «N» нитратов:
С6Н12О6 + 4NO3 → 6CO2 + 6H2O + 2N2
Энергетический выход нитратного дыхания приближается к аэробному окислению.
Некоторые бактерии осуществляют нитрат-нитритное дыхание:
С6Н12О6 + 12NO3 → 6CO2 + 6H2O + 12NО2
Образующийся нитрит либо выделяется в среду, либо восстанавливается до NH3.
Приведенные процессы восстановления – диссимиляционное восстановление нитратов.
Некоторые бактерии (Thiobacillus denitrificans) используют в процессе денитрификации энергию серы и тиосульфата, которые при этом окисляются до сульфатов, а нитрат восстанавливается до N2.
Анаэробные сульфатвосстанавливающие бактерии: Desulfotomaculum, Desulfonema, Desulfrovibrio, Desulfomonas и др. – одноклеточные и нитевидные формы. В качестве источников углерода и энергии они используют органические кислоты, спирты и некоторые сахара. Бактерии этой группы способны получать энергию и за счет окисления Н2, сопряженного с восстановлением сульфатов:
4Н2 + Н2 SO4 → Н2S + 4Н20
Анаэробное окисление органических соединений, происходящее с переносом водорода на сульфаты, сульфиты, тиосульфаты, которые восстанавливаются до Н2S – диссмиляционная сульфатредукция. Органические вещества при этом окисляются чаще всего до уксусной кислоты.
Выход энергии при анаэробном дыхании на 10% меньше, чем при аэробном, но больше, чем при брожении.
<== предыдущая лекция | | | следующая лекция ==> |
Признаки сходимости Даламбера и Коши, радикальный признак Коши | | | Разложение гемицеллюлозы |
Дата добавления: 2016-04-22; просмотров: 4669;