Понятие нечеткого числа

Одной из областей применение нечеткой логики является выполнение арифметических операций с нечеткими множествами. Для снижения трудоемкости таких операций используется специальный тип нечетких множеств – нечеткие числа.

Нечетким числом(НЧ) называется нечеткая переменная, имеющая следующие свойства: ; .

Другими словами, нечеткое число– именованное нечеткое множество, для которого универсальное множество U представляет собой интервал действительной оси R.

В реальных задачах используются кусочно-линейные нечеткие числа.Для упрощения арифметических операций кусочно-линейные функции принадлежности дополнительно аппроксимируют, чтобы получить специальный вид нечетких чисел – параметрические нечеткие числа или нечеткие числа

(LR)–типа, которые характеризуются компактностью представления и просто-

той реализации арифметических операций.

Нечеткое число А называется нечетким числом (LR)–типа, если его функция принадлежности имеет следующий вид (рис. 7.8):

 

0,

µА(u) =
1, ,

,

 

 

где – параметры нечеткого числа; L(x), R(x) – некоторые функции.

Нечеткое параметрическое число обозначается (a, b, c, d)LR.

Таким образом, нечеткое число (LR)–типа описывается шестью параметрами: четырьмя числами, обозначающими его границы, и двумя функциями, определяющими форму его функции принадлежности.

 
 

 


Рис.7.8 Параметрические нечеткие числа

Нечеткое числоназывается унимодальным, если оно имеет только одну точку, в которой функция принадлежности равна единице, т.е. его параметры b и c равны, в противном случае нечеткое число называется толерантным (см. рис. 7.8). Унимодальные нечеткие числа обозначаются пятью параметрами (a, b, d)LR.

В качестве LR–функций наиболее часто используют линейные зависимости, задаваемые следующими соотношениями:

, .

LR – функции также могут задаваться квадратичными, экспоненциальными и другими зависимостями.

В случае использования линейных функций унимодальные и толерантные нечеткие числа называют соответственно треугольными и трапециевидными и обозначают (a, b, d) и (a, b, c, d).

Для нечетких чисел особым образом определяется понятие знака и нулевого значения.

Нечеткое число А называется положительным, если его основание лежит в положительной действительной полуоси или

и .

Нечеткое число А называется отрицательным, если его основание лежит в отрицательной действительной полуоси или

и .

Для параметрических нечетких чисел знак определяется значениями параметров: положительное нечеткое число, если a > 0; отрицательное, если d < 0; нечеткий ноль, если .








Дата добавления: 2016-04-22; просмотров: 1920;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.