Нормирование погрешностей и формы представления результатов измерений
Основные задачи нормирования погрешностей заключаются выборе показателей, характеризующих погрешность, и установлении допускаемых значений этих показателей. Решение этих задач определяется целью измерений и использованием результатов.
Например, если результат измерения используется наряду с другими при расчете какой-то экспериментальной характеристики, то необходимо учитывать погрешности отдельных составляющих путем суммирования их СКО.
Если речь идет о контроле в пределах допуска и нет информации о законах распределения параметра и погрешности, то достаточно ограничиться доверительным интервалом с доверительна вероятностью. Эти показатели должны сопровождать результат измерений тогда, когда дальнейшая обработка результатов не предусмотрена.
Исходя из изложенного, для оценки погрешностей измерений необходимо: установить вид модели погрешности с ее характерными свойствами; определить характеристики этой модели оценить показатели точности измерений по характеристикам модели.
При установлении модели погрешности возникают типовые статистические задачи: оценка параметров закона распределения, проверка гипотез, планирование эксперимента и др.
В соответствии с МИ 1317—86 точность измерения должна выражаться одним из способов:
1) интервалом, в котором с установленной вероятностью находится суммарная погрешность измерения;
2) интервалом, в котором с установленной вероятностью находится случайная составляющая погрешности измерений;
3) стандартной аппроксимацией функции распределения случайной составляющей погрешности измерения и средним квадратическим отклонением случайной составляющей погрешности измерения;
4) стандартными аппроксимациями функций распределения систематической и случайной составляющих погрешности измерения и их средними квадратическими отклонениями и функциями распределения систематической и случайной составляющих погрешности измерения.
В инженерной практике применяется в основном первый способ (х = a±Δ, или Δ от Δmin до Δmax, Р=0,9). Система допусков, например, построена на понятии предельной погрешности Δ = ±2σ при Р=0,95 (ГОСТ 8.051-81).
Числовое значение результата измерения должно заканчиваться цифрой того же разряда, что и значение погрешности Δ.
Лекция 4.
Средства измерений.
Виды средств измерений.
Метрологические характеристики средств измерений.
Классы точности средств измерений.
Дата добавления: 2016-02-16; просмотров: 1152;