III. Методика измерений и расчетные формулы. В комплект установки входят: наклонная плоскость с регулируемой высотой, миллисекундомер, набор тел (брусок

ИЗУЧЕНИЕ ДВИЖЕНИЯ ТЕЛ ПО НАКЛОННОЙ ПЛОСКОСТИ

В комплект установки входят: наклонная плоскость с регулируемой высотой, миллисекундомер, набор тел (брусок, шарик, сплошной и полый цилиндры).

Общий вид установки представлен на рисунке. Наклонная плоскость представляет собой доску 1, угол наклона которой можно варьировать, изменяя высоту плоскости с помощью кронштейна 2. На вершине плоскости укреплен электромагнит 3, удерживающий тело. Измерение времени скольжения или скатывания проводится с помощью миллисекундомера 4. Включение секундомера с помощью переключателя 6 размыкает цепь электромагнита, и тело начинает двигаться вниз по наклонной плоскости. При ударе скатывающегося тела о специальную пластинку 5, расположенную вертикально у основания наклонной плоскости, происходит выключение секундомера. Сняв отсчет времени по шкале секундомера, необходимо привести переключатель контакта 6 в исходное положение. Клавиши секундомера 7, отмеченные красной наклейкой, должны быть нажаты, остальные - отжаты.

III. Методика измерений и расчетные формулы

1. Рассмотрим тело (брусок) массой m, находящееся на наклонной плоскости (см. рисунок). Угол наклона плоскости a можно найти из следующих соотношений:

  (1)

где S - длина наклонной плоскости; h - ее высота, которая является переменной величиной.

Тело будет находиться в покое, если геометрическая сумма действующих на него сил равна нулю:

В проекциях на оси координат:

Если учесть, что максимальное значение силы трения покоя равно то коэффициент трения покоя можно найти из соотношения

(2)

где - максимальный угол, при котором тело еще остается в покое.

Если , то , и тело будет двигаться ускоренно. Согласно второму закону Ньютона

Если учесть, что , где - коэффициент трения скольжения, то

.

Отсюда следует, что

Величину ускорения можно определить, если известны длина пути S1 и время движения t:

Путь S1 пройденный бруском, находится из соотношения

,

где l - длина бруска (размер бруска вдоль наклонной плоскости). Поэтому окончательно коэффициент трения скольжения находим из следующего расчетного соотношения:

(3)

Для определения времени движения бруска по наклонной плоскости расчетным путем можно воспользоваться законом изменения полной механической энергии:

где - высота, на которую опускается центр тяжести бруска. Поэтому учитывая, что конечная скорость бруска при равноускоренном движении равна

, (4)
окончательно получаем:

(5)

2. При рассмотрении движения скатывающихся тел (цилиндр, шар) можно считать, что коэффициент трения качения достаточно мал и поэтому . Поэтому можно воспользоваться законом сохранения механической энергии:

(6)
где - высота, на которую опускается центр тяжести скатывающегося тела; r и J - радиус и момент инерции скатывающегося тела. Поэтому, с учетом (6) и выражения для конечной скорости скатывающегося тела

(7)
получаем, что время скатывания тел равно:

а) для сплошного цилиндра , следовательно

(8)

б) для шарика ( )

(9)

в) для отрезка трубы ( )

(10)

 








Дата добавления: 2016-03-15; просмотров: 2377;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.