Теорема о повторении опытов
Следствием правил сложения и умножения вероятностей является теорема о повторении опытов (схема Бернулли):опыты считаются независимыми, если вероятность того или иного исхода каждого из них не зависит от того, какие исходы имели другие опыты.
Пусть в некотором опыте вероятность события А равна P(А) = p, а вероятность того, что оно не произойдет, P( ) = q, причём
. (2.18)
Если проводится n независимых опытов, в каждом из которых событие А появляется с вероятностью p, то вероятность того, что в данной серии опытов событие А появляется ровно m раз, определяется по выражению
, (2.19)
где – биномиальный коэффициент. (2.20)
Например, вероятность отсутствия ошибки чтения 32-разрядного слова в формате ЭВМ, представляющего комбинацию 0 и 1, при вероятности ошибки чтения двоичного числа p = 10–3 составляет по (2.8) при m = 0, :
.
При больших m вычисление биномиальных коэффициентов Cnm и возведение в большие степени p и q связано со значительными трудностями, поэтому целесообразно применять упрощенные способы расчётов. Приближение,
называемое теоремой Муавра – Лапласа, используется, если npq>>1,
а |m – np|<(npq)0,5, в таком случае выражение (2.19) записывается:
. (2.21)
Дата добавления: 2016-02-16; просмотров: 735;