Алгоритм решения транспортной задачи
Шаг 1. Привести открытую модель транспортной задачи к закрытой.
Шаг 2. Определить первое допустимое решение по правилу «северо-западного угла».
Правило северо-западного угла.
Заполнение транспортной таблицы начинается с левой верхней клетки («северо-западного угла») и состоит из однотипных шагов, на каждом из которых из рассмотрения исключается один поставщик или один потребитель:
1) если остаток продукта у i-го поставщика после предыдущих шагов меньше, чем неудовлетворенный запрос j-го потребителя, то исключается из рассмотрения i-й поставщик, и в клетку (i, j) заносится поставка xij, равная остатку продукта у i-го поставщика после предыдущих шагов;
2) если остаток продукта у i-го поставщика после предыдущих шагов больше, чем неудовлетворенный запрос j-го потребителя, то исключается из рассмотрения j-й потребитель, и в клетку (i, j) заносится поставка xij, равная неудовлетворенному запросу j-го потребителя;
3) если остаток продукта у i-го поставщика после предыдущих шагов равен неудовлетворенному запросу j-го потребителя, то исключается из рассмотрения или i-й поставщик, или j-й потребитель, и в клетку (i, j) заносится поставка xij, равная остатку продукта у i-го поставщика после предыдущих шагов. В случае исключения i-го поставщика в клетку (i+1, j) заносится поставка xi+1,j = 0 равная неудовлетворенному запросу j-го потребителя. В случае исключения j-го потребителяв клетку (i, j+1) заносится поставка xi,j+1= 0 равная остатку продукта у i-го поставщика после предыдущих шагов.
Шаг 3. Вычислить потенциалы.
1. Каждому поставщику ставится в соответствие потенциал pi.
2. Каждому потребителю — потенциал qj.
При этом каждой клетке соответствует некоторая оценка
, (5.6)
где ;
Один из потенциалов можно выбирать произвольно, т.к. в системе (5.3) и (5.4) одно уравнение линейно зависит от остальных. Обычно полагают p1=0. Остальные потенциалы вычисляются из того условия, что для базисных клеток Δij=0.
Шаг 4. Вычислить оценки всех свободных клеток по формуле (5.6).
Шаг 5. Проверить транспортнцю таблицу на оптимальность:
если среди оценок свободных клеток нет ни одной положительной, то базисное допустимое решение, содержащееся в данной транспортной таблице, является оптимальным.
Шаг 6. Если первая транспортная таблица оптимальная, то вычисления прекраить. Если нет, то транспортную таблицу необходимо пересчитать по соответствующему алгоритму и заполнить новую транспортную таблицу, вычислить новые потенциалы, оценки клеток и т.д.
Шаг 7. Процесс продолжать до тех пор, пока не будет получена транспортная таблица (и соответствующий план перевозок), для которой все
, ; .
Соответствующее последней транспортной таблице базисное решение является оптимальным.
Дата добавления: 2016-04-02; просмотров: 731;