Линии 2 порядка на проективной плоскости

 

Приведение уравнения линии 2 порядка к каноническому виду. Квадрики.

Некоторые свойства линий 2 порядка на проективной плоскости в модели пополненной плоскости.

Теоремы Паскаля и Брианшона.

 

Проективные преобразования проективных пространств

 

Перспективные соответствия проективных прямых, проективных плоскостей. Некоторые инварианты при перспективных соответствиях.

Проективные преобразования и отображения проективных пространств: различные определения и их эквивалентность. Проективные преобразования в координатах.

Группа проективных преобразований и ее подгруппы. Проективно-аффинные преобразования.

Проективная классификация линий 2 порядка относительно группы проективных преобразований. Связь с аффинной классификацией.

 

Приложение проективной геометрии к решению задач элементарной геометрии

 

Схема решения задач элементарной геометрии методами проективной геометрии.

Примеры задач, решаемых методами проективной геометрии.

 

Практические задания с решениями

Решаемые задачи иллюстрируют лекционный курс, а также создают мотивацию к последующему изучению теоретического материала. Четкая запись условий задач, подробная, структурированная запись решения геометрических задач является основным требованием к работе как преподавателя, так и студентов, что необходимо для качественного объяснения и усвоения геометрического материала. Недопустимы «приблизительные» решения, а также их отсутствие (только чертеж), что создает иллюзию понимания.

 

 

Тема 1. Сравнительное изложение аффинной и евклидовой геометрий

Список необходимых сведений:определения аффинных преобразований и движений аффинного и евклидова пространства. Их свойства.

Практические задания

1. На плоскости относительно прямоугольной системы координат дано каноническое уравнение эллипса с параметрами a , b.Перевести аффинным преобразованием данный эллипсв единичную окружность с центром в начале координат.

Решение.

Каноническое уравнение эллипса .

Перепишем его в виде .

Рассмотрим аффинное преобразование .

Оно переводит эллипс в единичную окружность с уравнением .

Штрихи над координатами x и y показывают, что единичная окружность является образом. После того как уравнение образа получено, то штрихи можно не писать.

2. На плоскости относительно прямоугольной системы координат даны две единичные окружности: с центром в начале координат и с центром в точке .Перевести одну окружность в другую аффинным преобразованием.

Решение.

Рассмотрим две единичные окружности

и .

Рассмотрим движение . Оно является параллельным переносом на вектор с координатами и переводит первую окружность во вторую.

 

3. Можно ли перевести любой эллипс в любой эллипс движением плоскости и почему?

Решение.

Из задач 1, 2 вытекает, что аффинным преобразованием можно перевести любой эллипс в любой эллипс. Для этого надо перевести оба эллипса в единичные окружности с теми же центрами, а затем перевести окружности друг в друга. Однако в случае произвольных канонических параметров эллипсов этого нельзя добиться движением, так как параметры отвечают за размеры эллипсов.

 

4. Можно ли перевести эллипс в гиперболу (или любую другую кривую 2 порядка) аффинным преобразованием и почему?

Решение.

Невозможно перевести аффинным преобразованием эллипс в гиперболу, так как эти фигуры имеют различные инвариантные свойства. В частности, эллипс является ограниченной фигурой, а гипербола – неограниченной. Эллипс не имеет асимптот, а гипербола имеет.

 

Аналогичные задачи надо уметь решать для всех кривых 2 порядка на плоскости.

 

Сделать следующие выводы.

Любой эллипс можно перевести в любой эллипс аффинным преобразованием.

Два эллипса можно перевести друг в друга движением плоскости только если они имеют одинаковые канонические параметры.

Сделать аналогичные выводы для других кривых 2 порядка на плоскости.

Составить список инвариантных (относительно аффинных преобразований) свойств и показать, что кривые из разных канонических классов имеют разные инвариантные свойства. Следовательно, не могут быть переведены друг в друга аффинным преобразованием.








Дата добавления: 2016-03-27; просмотров: 1497;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.